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Abstract 
Before “Learning Analytics” became the buzzword that it is today, fueled by the advent of "big data" 
MOOCs and increased institutional attention to retention and time-to-degree, fine-grained transactions 
within courses were analyzed as a unique window into student learning: what resources do learners access 
in which order, how much time do they spend with each resource, to what degree do different resources 
contribute to success in formative assessment, what is the effect of online discussion forums, how many 
attempts does it take which learners to solve online homework, and what is the extend and effect of 
unproductive behavior such as procrastination, guessing, and copying? We will focus on virtual and blended 
physics courses and use data mining methods to extract various predictive signatures of eventual learner 
success on exams. We also use classical test theory and item response theory to estimate both quality 
parameters of online homework and latent learner traits such as ability and the propensity to copy or guess 
answers. Based on these findings, we will make recommendations for course design. 
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Introduction 
Massive Open Online Courses (MOOCs) with their “Big Data” have recently brought renewed 

attention to course-level Learning Analytics (e.g., Breslow et al., 2013; Clow, 2013; Kizilcec, 

2013), while the general trend had been toward institutional-level Learning Analytics before (e.g., 

Campbell et al., 2007). However, even long before the advent of MOOCs, course management 

systems (or any other web-based teaching platforms) have been collecting large amounts of 

transactional and log data on student interaction and transactions useful for Learning Analytics 

(e.g., Zaïane, 2002; Bruckmann, 2006; Peñalvo et al.,2011; Psaromiligkos et al., 2011; Mazza et 

al., 2012). Regular university physics courses make use of online components in a variety of ways: 

fully online, for-credit “virtual” physics courses have been offered in addition to blended, hybrid, 

and flipped courses for decades (e.g., Kortemeyer, 2014b); even otherwise traditional courses may 

have their textbook materials in an online format. Course-level Learning Analytics can be applied 

to all of these course delivery modes. 

Learning Analytics arguably started out as Educational Data Mining (EDM) in the mid-nineties 

(Romero & Ventura, 2007; Romero & Ventura, 2013), even though EDM is technically different 

from Learning Analytics and Knowledge (LAK) (Siemens & Baker, 2012). There are subtle 

differences between EDM and LAK: a stronger focus on automation in EDM versus a stronger 

focus on informing educators and human judgment in LAK, a reductionist approach in EDM 

versus a holistic approach in LAK, and frequently different sets of algorithms (Papamitsiou & 

Economides, 2014; Chatti et al., 2014). – however, the goal is the same: increased learning 

outcomes (Greller & Drachsler, 2012; Gašević et al., 2015).   

Course-level learning analytics put a strong emphasis on formative assessment, i.e., the 

assessment that accompanies the ongoing learning process. Physics and other STEM disciplines 

have traditionally been at the forefront of deploying Learning Analytics and Educational Data 

Mining (Fournier et al., 2011); in fact, physicists may have “discovered” Learning Analytics before 

the learning sciences did (Baker & Inventado, 2014), likely because STEM disciplines such as 

physics already traditionally deal with large masses of data, and some of those mechanisms can 

be brought to bear on educational problems (Mislevy et al., 2012). 

Early on, the goal often was the creation of adaptive, personalized, “intelligent” learning 

environments; this turned out to be an uphill battle, as teaching and learning have many “moving 

parts” (Gašević et al., 2016). Instead of automated systems that attempt to guide learners 

independent of instructors (e.g., Khribi, et al., 2008), more frequently dashboards are providing 

instructors with Learning Analytics (Duval, 2011) as integrated or pluggable components of 

course management systems (Verbert et al., 2013). A major goal here is the early identification of 

students-at-risk (Mattingly et al., 2012; Wolff et al., 2013), as well as quality control of online 

materials (e.g., Dyckhoff et al., 2012) and Just-In-Time Teaching interventions (Novak, 1999). In 

addition, course-level Learning Analytics has the potential to deliver valuable research insights 

for studies on student learning, including the important study of physics-problem solving 

strategies (see Gok, 2010, for a review of research in this area). 

We argue that even with modestly sized courses (100-400 students), course-level learning analytics 

can provide valuable input to instructional designers and instructors, and illustrate this claim by 

a number of examples from introductory physics courses. 

Methodology 

The data in this study has been obtained from the log files automatically collected by the LON-

CAPA course management system (Kortemeyer et al., 2008). These files record time-stamped 

and user-identified accesses of course resources such as content pages, homework and exam 

problems, as well as discussion boards. For problems, in addition the correctness status is 

recorded for all attempts to solve them. Where applicable, final course grades were also taken 

into consideration to obtain a broader spectrum of student performance. A number of different 
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introductory physics courses were considered, both algebra- and calculus-based, which are taken 

as “service courses” by a variety of non-physics majors. Unless mentioned otherwise, these 

courses took place at Michigan State University. Data were processed using custom scripts and 

analyzed using correlation and time-series algorithms, as well as classical test and item response 

theory mechanisms using both custom scripts and the R statistical package (R core team, 2014).  

Performance Prediction 
As early as 1992, interactive online homework was introduced into undergraduate physics courses 

(Kashy et al., 1993). Ever since, with about 10 to 20 problems per weekly homework assignment, 

these courses provide rich performance data. Somewhat unique to physics, these problems tend 

to be open-ended free-response, where students type in numbers such as “42.6 Nm” – alongside 

with ranking tasks, these tasks are much more closely coupled with conceptual thinking than 

simplistic 1-out-of-N multiple-choice problems (Kortemeyer, 2006). Additionally, students 

typically provide more than one of these complex data points per problem, as multiple tries are 

allowed to arrive at the correct solution (Kortemeyer, 2015). 

In contrast to these rich data, the final result of college courses frequently is just a single grade; 

not only does the richness of the formative homework data get lost in this measure, but the 

course grade of a physics course typically has a large number of other components, most notably 

exams (with usually very high impact on the course grade), labs, clicker points, and recitations. 

However, homework data comes streaming in from Day One of the course, and in the interest 

of developing “Early Warning Systems,” it is important to ask to what degree Learning Analytics 

of homework performance can predict the final grade. 

We found that up to 87% of the final grade can be predicted by online student behaviors using a 

combination of different data-mining methods applied to online components of physics courses 

(Minaei-Bidgoli et al., 2003). As the course grade is largely determined by exam scores, we are 

essentially investigating how well online behavior predicts exam scores. 

The most important predictor is the total number of correctly solved online homework problems 

(relative importance 100%, independent of how many tries it took), followed by the number of 

tries required to arrive at the correct solution (relative importance 59%). However, getting a 

problem correct on the very first attempt is a much weaker predictor (relative importance 28%), 

with an impact approximately equal to measures of time-spent-on-task (relative importance 25%). 

Apparently, in physics courses, persistence is a better indicator of success than immediate 

“genius” (Kortemeyer, 2017). This result is notable, as many physics instructors tend to put more 

weight on the initial than later attempts, which turns out to be unjustified; it is also surprising, as 

almost all of the final grade can be explained by data that is plagued by the unproductive student 

behavior discussed in the following sections. Other online behavior, such as participation in 

online discussions, was found to be a much weaker predictor of success in our physics courses 

(relative importance 9%). 

Cramming 

Traditional physics lecture settings and instructional methods tend to result in ineffective study 

habits and low conceptual learning (Hake, 1998), as students may not continually reflect on and 

monitor their learning progress (Mason & Singh, 2009), but instead engage in short “cramming 

bursts” as exams are approaching; they attempt to catch up and read too much material in too 

short an amount of time. This behavior cannot be measured directly if the course uses traditional 

textbooks, as there is no access log. However, self-reporting and analysis of electronic textbooks 

reveal that continual usage of reading materials is distressingly low in traditional physics courses 

(Podolefsky & Finkelstein, 2006; Steltzer et al., 2009). This behavior negatively influences course 

outcomes, since it was shown that interacting with the online materials of physics courses on a 

daily basis has better learning effectiveness (as measured by exam grades) than only weekly or 

even less frequent access – continuity matters (Kortemeyer, 2016b). 

Learning Analytics can provide insights into the level to which course structure can discourage 

unproductive behavior (Seaton et al., 2014a). We analyzed the access patterns of online materials 

in courses at the Massachusetts Institute of Technology and Michigan State University. In courses 

that were otherwise taught traditionally (weekly end-of-chapter online homework and a small 

number of midterms), log files show “cramming” before exams, i.e., sharp peaks in access 

frequency of online materials immediately preceding exams. Despite weekly homework, students 

do not regularly access the course materials between exams. Access is also highly selective, as 

students tend to only read materials immediately relevant for their homework, with large portions 

of course materials only being accessed by a small fraction of the students (Kortemeyer, 2016b). 

This unproductive behavior declines when embedding the online homework directly into the 

materials (as possible in LON-CAPA (Kortemeyer et al. 2008; Seaton et al., 2014b)), paired with 

frequent exams. We found that while in traditional courses, only half of the students read at least 

half of the materials, in reformed courses, more than 90% of the students do so – this result is 

consistent with findings in reformed physics courses elsewhere (e.g., Heiner et al., 2014). The 

strong access frequency peaks vanish in favor of more distributed smaller peaks. Combined with 

earlier results that this reformed course structure leads to a more positive attitude and less 

unproductive problem-solving behavior (Laverty et al., 2012), frequent small quizzes (instead of 

few large exams) appear to lead to both qualitatively and quantitatively more effective learning 

environments.  

Guessing and Copying 
The number of tries used by students to solve online homework problems was found to be a 

predictor of overall course success (Minaei-Bidgoli et al., 2003). There is no consensus among 

instructors about how many tries to grant students to arrive at the correct solution; a survey 

showed that even physics education researchers are granting anywhere from just one to infinite 

number of tries (Kortemeyer, 2015) and that they also employ different reward schemes including 



15 G. Kortemeyer, Learning Analytics and Data Mining of Multimedia Physics Courses 

 

IJPCE - International Journal of Physics and Chemistry Education, 11(1), 13-17  www.ijpce.org 

reduced credit for using more tries. These choices matter, as they can influence student behavior 

when it comes to random guessing or copying of answers (Kortemeyer, 2015). If students are 

given a large number of attempts, they frequently do not pay much attention to a particular 

attempt; they tend to enter “random” numbers and work through patterns: changing the sign, 

changing the result by factors of two or orders of magnitude. We found that more than half of 

the retries on online homework are submitted within less than one minute of the previous failed 

attempt when multiple attempts are allowed – hardly enough time for a serious effort on checking 

answers and derivations (Kortemeyer & Riegler, 2010). Resubmission times are slightly shorter 

for male than for female students (Kortemeyer, 2009), but in any case below acceptable limits. 

Granting very few attempts, on the other hand, could lead to students copying answers from 

others out of apparent desperation. 

We analyzed homework transaction logs from introductory physics courses for scientists and 

engineers (Kortemeyer, 2015), which were taught by different instructors who had different 

policies regarding allowed tries. We found that the rate at which students succeed on a given 

attempt decreases with increasing number of allowed tries, and the rate at which students give up 

and stop working on problems after a given attempt does not depend on the number of allowed 

tries. We also found that the tries on online homework were largely independent of each other, 

as students apparently did not learn from their mistakes. This corresponds to the short 

resubmission times, as well as unsystematic plug-and-chug strategies that do not allow students 

to go back through their derivations and fix errors (Kortemeyer, 2016a). 

Having a large or even unlimited number of allowed tries leads to less desirable problem-solving 

strategies, as students are not productively taking advantage of these additional chances. 

Instructors might grant many tries with the intention to allow students to keep working till they 

master a concept, but we found that running out of tries is a far less likely reason for failure than 

simply giving up (Kortemeyer, 2015). 

A preliminary model, which we developed based on extrapolating trends from the courses with 

different policies, predicts the optimum number of allowed tries to be five. While students may 

not be happy with this choice, in reality, it rarely keeps students from eventually solving problems; 

in a course where five tries were used, the vast majority of students solved almost all homework 

problems. 

Item Response Theory 
Our studies show that homework has an essential role in online physics courses. When 

developing, deploying, and maintaining online courses, their homework components deserve 

particular attention, and quality control is essential. We have shown that Classical Test Theory 

can successfully be employed to obtain measures of homework item quality (Kortemeyer et al., 

2008), including continual monitoring of these items (Kortemeyer, 2016c) 

In summative assessment, e.g., exams, a commonly used tool is Item Response Theory (IRT) 

(Embredson & Reise, 2013). We studied if this same tool can be used to evaluate the 

meaningfulness of online homework (Kortemeyer, 2014a) to enhance Learning Analytics. In a 

possible application of IRT to data mining, online homework items that have more desirable item 

parameters (i.e., average difficulty and high discrimination) could receive more weight in 

subsequent data mining efforts (see Baker & Yacef, 2009, for additional avenues to integrating 

IRT into EDM) 

When using IRT to estimate the learner trait of ability, results obtained from online homework 

show the correct trends compared to exam data, but the absolute agreement is moderate. Our 

earlier, more classical approaches were more successful to gauge student success (Minaei-Bidgoli 

et al., 2003). Item discrimination is less sensitive to the change from exam to homework context 

than item difficulty; while difficulty decreases due to multiple allowed tries and possible copying, 

homework items still give meaningful feedback to the student and the instructor (Kortemeyer et 

al., 2005).  

Closely related to the above, the effect of considering only the correctness of the first attempt on 

homework wears out over the course of the semester as the integrity of student study behavior 

apparently declines: while in the first quarter of the course, it is one of the strongest indicators, 

over the course of the semester, students start working in less and less desirable ways, and first-

attempt success becomes more of an indicator of copying solutions than immediate 

understanding. As mentioned earlier, eventually solving a problem is a better indicator of student 

success than getting problems correct on the first attempt. 

Attempts to introduce additional student traits in order to lessen the influence of unproductive 

student behavior such as copying and guessing on item parameters are still an area of active 

research (Gönülates & Kortemeyer, 2017). Current results, however, indicate that the predictive 

power of models cannot be greatly improved by introducing additional traits (or, for that matter, 

additional item parameters); instead, the risk of over-fitting the data increases. 

Discussion 
The validity of the results from Learning Analytics is overshadowed by the same undesirable 

student behavior that also hinders learning itself: copying, guessing, and cramming. It was shown 

that these are reduced by giving more frequent, smaller exams, and by granting a reasonable 

number of tries. In addition, randomization of online homework can cut down on copying 

(Kortemeyer et al., 2008). Instructors should also consider types of homework problems that 

demand more complex solutions than simply numbers, for example graphing tasks (Laverty & 

Kortemeyer, 2012). 
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While the mere participation in student discussion is a poor indicator of eventual student success 

(Minaei-Bidgoli et al., 2003), providing sanctioned online venues within the course context of 

online courses is a far better option than students migrating to un-sanctioned online “cheat sites” 

(Kashy et al., 2003). Predictions are, however, possible when considering the actual character of 

the discussions (Kortemeyer, 2007), and advances in automated online discourse analysis may 

make it possible to eventually incorporate these characteristics into Learning Analytics. 

Finally, it may be a promising approach to add some online problems for which detailed problem 

derivations need to be submitted. To that end, students can be asked to photograph their written 

solutions with a smartphone and upload those solutions to the course management system, where 

they can quickly be hand-graded using a grading queue. 

Future applications of Learning Analytics may include recommender systems for instructors, 

which assist them in compiling course materials and assignments. Of particular interest is mining 

events where students were unsuccessful in solving a particular homework item, interacted with 

other materials and problems, and then were successful to solve that item. We expect that given 

sufficient statistics, these events allow conclusions about the contextual effectiveness of learning 

resources, rather than considering them in insulation. 

Implementing these strategies, unfortunately, is not without challenges: cultural, administrative, 

and logistical challenges need to be overcome when implementing these methods outside the 

United States, where many of them originated (e.g., Kortemeyer & Riegler, 2010; Cruz et al., 

2011). 

Conclusions 

Course-level access and formative assessment data provide rich input for Learning Analytics. 

Results can be used to improve course structure to reduce undesirable behavior, as well as to 

provide quality control for online materials. Data-Mining methods are overall more promising 

than traditional Item Response Theory in these online settings, even when attempting to explicitly 

model unproductive student behavior. 
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