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Abstract  
In this paper we employ a numerical approach to perform simulations of Maxwell distribution for several 

dimensionalities, based on the Central Limit Theorem. We show that by increasing the number of molecules 

of the gas N, the simulated distributions tend toward the respective theoretical distributions. Also, we 

observed that by increasing the model temperature n, the distribution shifted toward higher speeds, in 

agreement with theoretical results. The numerical simulations provide a physical definition of the concept 

of temperature. The codes used to perform the simulations are quite easy to construct and implement, while 

the results strikingly satisfy theoretical expectations. Furthermore, the actual approach makes it possible to 

skip the mathematical details and explain the distribution by just following the algorithm of simulations. We 

recommend such approach as a demonstrative tool that can be shown in a lecture class thus enriching the 

teaching quality and improving students’ understanding. 
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Introduction 
The kinetic theory for gases has proved to be a very successful framework for the ideal gas model 

(Huang, 1987; van Kampen, 2007; Lemons, 2013; Serway & Jewett, 2014). This theory, which 

combines mechanics and statistics, represents also a pedagogical elegance that has shaped the 

classical view of physical phenomena (Huang, 1987; van Kampen, 2007). The focus in an 

introductory Thermodynamics course is the ideal gas. The assumptions of the ideal gas are quite 

simple. The structural particles of the gas are material points, i.e. have no volume. Another 

assumption is that the structural particles collide elastically with the walls of the container 

meaning that no energy is lost into heat or other non–mechanical forms. Finally, the structural 

particles do not interact, i.e. these particles (from now on molecules) possess only kinetic energy 

(Huang, 1987; van Kampen, 2007; Serway & Jewett, 2014). Despite being very simple and 

somehow nonrealistic the ideal gas model results to be in many situations a very good 

approximation, especially succeeding in interpreting quantities like pressure and its relation to 

other physical quantities that characterize the state of gas (Lemons, 2013; Reichl, 2016). 

In the present paper we investigate only the equilibrium state of the ideal gas, in which case the 

thermodynamic temperature is well defined. The kinetic theory typically defines the temperature 

T, as a measure of the average kinetic energy of the molecules of the gas (Lemons, 2013). 

However, the molecules themselves possess different amount of kinetic energy. Recall that the 

molecules of the ideal gas possess only kinetic energy which is related to speed. Therefore, we 

can state that they do not have the same speed. The distribution of molecules with respect to 

speed has been establishes since 1860 by Maxwell in the framework of the kinetic theory (Reichl, 

2016; Schmidt–Böcking et al., 2016). The distribution was derived by Boltzmann in 1877 (Huang, 

1987; Serway & Jewett, 2014), under the framework of statistical physics and was generalized 

further, exposing the Maxwell’s distribution as a special case of the more general Maxwell–

Boltzmann distribution (Reichl, 2016). 

It took a long time, six decades, and an ingeniously designed experiment known as the Stern–

Zartman experiment, to provide the first experimental evidence of the Maxwell’s distribution in 

a gas (Schmidt–Böcking et al., 2016). This delay in the experimental confirmation of this famous 

theoretical result emphasizes the distinct technical difficulties. In the Thermodynamics 

Laboratory curriculum may be present an experimental set–up that verifies the Maxwell’s 

distribution. Instead of a gas, there is used a “gas” of small hard spheres. However, this set–up 

may not be available for various reasons. This technical limitation usually is reflected in the 

understanding of the students being merely confined to theoretical aspects. 

Computational methods are an integral and essential part of modern undergraduate physics 

curricula. The various techniques studied at this level are then broadened and specialized in many 

disciplines in graduate studies (Daineko et al., 2017; Magana & Silva–Coutinho, 2017; Behringer 

& Engelhardt, 2017). The computer–based techniques are considered crucial in tackling 

complicated problems that lack analytical results or in simulating complex systems whose 

dynamics is yet not well understood (Zupančič & Sodja, 2013; Sarabando et al., 2014; Taub et al., 

2015; Daineko et al., 2017; Magana & Silva–Coutinho, 2017; Behringer & Engelhardt, 2017; 

Yetilmezsoy & Mungan, 2018). These techniques are widely used in areas like structural 

mechanics, fluid mechanics, statistical mechanics, system dynamics, etc, (Zupančič & Sodja, 2013; 

Behringer & Engelhardt, 2017). However, at university level, the computational methods are 

intended to be used jointly with analytical techniques. The important principles of a given 

discipline are initially discussed theoretically and after some clarifying analytical examples, the 
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real–world problems are solved by using numerical techniques. It is reported that the 

combination of these two approaches considerably increases the student’s understanding 

(Zupančič & Sodja, 2013; Sarabando et al., 2014; Taub et al., 2015; Yetilmezsoy & Mungan, 2018; 

Boriçi, 2019). 

Numerical techniques are very suitable for thermodynamics or statistical physics in simulating 

many–body systems (van Kampen, 2007; Lemons, 2013; Reichl, 2016). Such methods are not 

intended to replace the experiment–oriented parts of a given course, like the laboratory sessions. 

Rather they should be seen as an additional approach to facilitate the exposition of the material 

discussed in the course, thus making it easier for students to understand what is being discussed. 

This is extremely useful especially when the simulations can be performed with a conventional 

desktop or laptop. Experimental set–ups that enable simple studies related to Maxwell’s 

distribution may be quite expensive and may be no that helpful for students’ understanding of 

the underlying physics (Lemons, 2014; Reichl, 2016). We strongly believe that the combination 

with simulations is very effective in conveying the core ideas of Maxwell’s distribution. In the 

present paper we show the effectiveness of the numerical approach in illustrating key aspects of 

Maxwell’s distribution for an ideal gas of various dimensionalities. We show that many of the 

theoretical features of the distribution are reproduced successfully. The authors of the paper teach 

the material presented here in a course of introductory Computational Physics taught at the 

Faculty of Natural Sciences, University of Tirana (Boriçi, 2019). 

The paper is organized as follows: in the section 2 we discuss concisely the theory behind 

Maxwell’s distribution and derive the key formulas for the one–, two– and three–dimensional 

ideal gas in equilibrium at a given temperature T. In section 3 we discuss the algorithm of the 

simulations. In section 4 we report some results regarding the physical accuracy of the simulations 

and their effectiveness in visualizing key features of Maxwell’s distribution. In section 5 we 

discuss some of the results reported in the previous section. In section 6 we discuss the paper 

from the pedagogical point of view providing some helpful suggestions. Finally we conclude the 

paper with the conclusions section. 

Maxwell’s distribution for different dimensionalities 
One of the key properties of the ideal gas is its independence from frame’s spatial orientation, 

i.e. it is isotropic. The ideal gas looks the same in whatever direction you look or despite the frame 

chosen by the observer (van Kampen, 2007; Serway & Jewett, 2014). Therefore, the different 

velocity components possess the same properties and are characterized by the same distribution. 

This fact is very important and pedagogically has been traditionally used to obtain the Maxwell 

distribution in three dimensions. Actually this very argument can be used to obtain the Maxwell 

distribution in any dimensionality (Lemons, 2013; Reichl, 2016). The isotropy of the ideal gas 

makes it possible to neglect the direction and focus only on the magnitude of the velocity, because 

it is basically a measure of the energy of the molecule (Huang, 1987; van Kampen, 2007; Lemons, 

2013; Serway & Jewett, 2014; Reichl, 2016). The one–dimensional case is crucial for higher 

dimensionalities. Therefore, we will start with the ideal gas in one dimension and then will discuss 

the two– and three–dimensional gas. 

One–dimensional ideal gas 
The Maxwell’s distribution is a special case of the more general Boltzmann distribution, obtained 

by the latter from statistical considerations. In both cases there is considered a physical system, 

like a gas, being in thermal equilibrium with temperature T. The Boltzmann distribution describes 

the probability Pi for a given subsystem, like one molecule of the gas, to be in the state i, with 

respective energy εi: 

  ,
i

Bk T

i iP P e






       (1) 

where εi is the energy of the state i, kB is the Boltzmann constant and T is the thermodynamic 

temperature. In the relation (1) it is assumed that the system has a discrete number of levels. In 

the continuous case, we discuss the probability for a given molecule to have its energy in a given 

range rather than a single value. When this range is the infinitesimally small quantity dε, the 

respective probability is the infinitesimally small amount dP. These two quantities are 

proportional to each other and the proportionality coefficient is known as the probability density 

function (PDF), g(v) (Huang, 1987; van Kampen, 2007; Lemons, 2013; Reichl, 2016). The PDF 

of the Boltzmann distribution is proportional to the exponential function in (1)  

The Maxwell’s distribution pertains to the continuous distribution category and describes the 

distribution of molecules of the ideal gas for different energy values. Since these molecules 

possess only kinetic energy, for a one–dimensional gas there can be written 

21
.
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By substituting (2) into the continuous form of (1) and introducing a proportionality constant C 

in (1), we have 
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where g(vx) is the probability density. In principle the velocity component x  ], [, thus 

by directly integrating we find (Serway & Jewett, 2014; Lemons, 2013): 
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We have used the normalization condition, which requires that the sum of probabilities for all 

possible outcomes to be equal to unity. By substituting (4) into (3) we obtain 
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Clearly the theoretical distribution of molecules against vx for a one–dimensional ideal gas is 

Gaussian (Feller, 1957; Cox & Miller, 1972; Huang, 1987; van Kampen, 2007; Lemons, 2013; 

Serway & Jewett, 2014; Reichl, 2016). The same argument can be used even if we consider a one–

dimensional ideal gas in the y and z directions. In those cases, the density functions will be 
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Two–dimensional ideal gas 
The two–dimensional ideal gas is collection of molecules that move exclusively in two 

dimensions. Interestingly there are many works concerning this type of gas, despite its non-

applicability in real world problems (Ftačnik, et al., 1983; Bonomo & Riggi, 1984; Aiello-Nicosia 

& Sperandeo-Mineo, 1985; Bellomonte & Sperandeo-Mineo, 1997). In such a system, the 

molecules move on a plane. Therefore, the velocity vector of each molecule is v = (vx, vy) as shown 

in Figure 1. The distribution of molecules against speed for each component is normal as in (5) 

for the x component and (5) for the y component. Recall that the velocity components of 

molecules are independent from each–other. Therefore, the distribution for v will be the product 

of the respective distribution of each component (Lemons, 2013; Reichl, 2016). 

 

Figure 1. The transformation from Cartesian to the polar system in the velocity space. 

In order to find the Maxwell’s distribution in two dimensions, we should write for the probability 

density 
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It is extremely useful to switch from Cartesian to polar coordinates in the velocity space according 

to the transformations (see Figure 1 for reference) 
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Thus, the probability density function (6) can be written as 
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The arbitrary constant C1 is gauged in a similar fashion as described in the previous paragraph, 

where the double integration is performed for both variables. The integration leads to (Lemons, 

2013; Reichl, 2016): 
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Thus, substituting (9) into (8) and integrating with respect to θ, one obtains 
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The final result is obtained after integration with respect to θ. 

The shape of function (10) resembles quite a lot with the familiar Maxwell curve for three 

dimensions (Huang, 1987; van Kampen, 2007; Lemons, 2013; Reichl, 2016). The main difference 

is the exponent of the speed that is one in this case and two for the three–dimensional gas. An 

important result that we will use to make quantitative evaluations is the average speed, i.e. the 

first moment of the distribution (Huang, 1987; Serway & Jewett, 2014; Reichl, 2016). This 

quantity can be evaluated by performing straightforward integration to be 
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where R is the gas constant, M is the molar mass of the gas and T is the thermodynamic 

temperature. From equation (11) we can express π as 
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      (12) 

Therefore, if we know the average speed or the first moment of the distribution, we can 

theoretically obtain the value of π. The relation (12) resulted to be a useful measure to provide 

quantitative comparison between the simulated and theoretical distributions. 

Three–dimensional ideal gas 
The next ideal gas case is that in three dimensions. The molecules of the gas are free to move in 

space. The velocity vector for each molecule is the v = (vx, vy, vz) as shown in Figure 2, left panel. 

Again the distribution of molecules for each component is normal as in (5), (5’) and (5’’). Naturally 

the velocity components of the molecules are independent the distribution for the speed v will be 

evaluated in analogy with (6).  Therefore, the probability density for the three–dimensional ideal 

gas is (Serway & Jewett, 2014; Lemons, 2013) 
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Similarly as for the two–dimensional gas, we will switch from the Cartesian to the spherical polar 

coordinates in the velocity space according to the transformations (Figure 2)  
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When performing such transformation, one should consider how this very procedure affects the 

infinitesimally small volume of space, which in this case becomes (Figure 2, right panel) 
2 sin ,x y zdv dv dv v dvd d       (15) 

being very similar to the respective transformation between Cartesian and spherical polar 

coordinates in position space. By substitution of (14) and (15) into (13) and then integrating 

accordingly, we obtain 
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Figure 2. The transformation from Cartesian to the spherical polar system in the velocity space. In 

the left panel is shown schematically the relation between components in both coordinate systems. 

In the right panel is shown the elementary volume in both coordinate systems. The figures can be 

found freely on the internet. 

The probability density (13) consequently can be casted into 
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The final result is derived after integrating with respect to θ and φ. 

A helpful result is again the expression of the average speed. In three dimensions, the average 

speed reads 
1/2
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Isolating π on the left side, we can finally write 
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Numerical method 
The central limit theorem 

The central limit theorem (CLT) is one of the crucial results in probability theory (Feller, 1957; 

Cox & Miller, 1972). Actually the work described in the actual paper is a demonstration of this 

theorem. Let us suppose that we have a set of independent identically distributed random 

variables Xi. The expected value μ and the variance σ2 of the distribution are finite. We construct 

the variable 

1 2 ,n nS X X X   K      (20) 

where n is the number of added random variables. Next we define a new variable 

2
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
       (21) 

The standard deviation is about the initial set of random numbers. Then for every real a and b, 

such that a < b, it is valid 
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Equation (22) constitutes one of the formulations of the CLT (Feller, 1957). 

We stated nothing regarding the nature of the distribution of the original variables Xi. Actually it 

is not relevant if the variable is discrete or continuous. The result (22) will be valid as long as the 

expectation and variance are defined (Feller, 1957; Cox & Miller, 1972). In Figure 3 is shown a 

typical example that verifies the CLT. The uniformly distributed random variables Xi are 

generated independently from each other. We add a different number of them n. It is clear that 

as n becomes increasingly larger the PDF of the Zn variables approaches the PDF of the normal 

distribution. 

 

Figure 3. Schematic representation of the CLT. The independent random variables satisfy the 

uniform distribution. On the right is shown what happens to the PDF of the Z variable when the 

number of Xi variables increases. When adding 30 Xi’s the PDF of the Z variable resembles the normal 

distribution. The distribution becomes normal as the number of added Xi’s is infinite. The picture is 

reproduced from (Feller, 1957; Cox & Miller, 1972). 

Simulating the ideal gas 
One of the typical applications of CLT is related to coin tosses. In such case, one associates the 

value 1 if head is tossed and –1 if tail is tossed. We generate uniformly distributed random 

numbers that fall in the open interval ]0, 1[. Then we transform these numbers into a set of 

integers Xi  {–1, 1}. Afterwards, we construct with these numbers the following quantity: 

1 2 ... .x nv X X X         (23) 

Due to the combination 1 and -1, the quantity (23) can have positive, negative or zero value. 

Thus, it becomes very handy to simulate the velocity component (in 1D). Furthermore, the 

random nature of the numbers in (23) ensures the randomness of the velocity component. In this 
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way we can simulate the velocities of the molecules of a given gas in a given temperature. The 

uniform distribution of the Xi’s is characterized by (Boriçi, 2019): 

  2 20,    1.E X E X       
   (24) 

Thus, according to the requirements of the CLT, we construct the normalized sums: 
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n
       (25) 

We square up equation (25) and find that 
2

2 .x
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v
Z

n
       (26) 

Taking into consideration the Maxwell’s distribution PDF in (5), we can deduce that the variance 

of the distribution is 

2 .B
v

k T

m
        (27) 

The construction (26) indicates that we should set 
2.vn         (28) 

Thus, the parameter n is the square of the standard deviation of the limiting normal distribution 

in (22). Clearly n depends on the thermodynamic temperature T; we consider this parameter as 

the model’s temperature. By substituting the values of the Boltzmann constant, the average 

molecular mass of the air molecules and temperature 300 K, one finds n = 86,000. In the next 

section we never analyze such a value, because it requires relatively extended computational 

resources. However, to show the efficiency of our approach, it is not necessary to employ such 

large values for n. The other parameter in our algorithm is the number of molecules N. 

In order to simulate the distribution of velocities for a given number N of molecules, whatever 

the dimensionality, we initially generate an n×N matrix with uniformly distributed random 

numbers 1 and –1. Thus, the velocity component for each molecule is found by simply adding 

the random values in each column. The numbers of rows coincide with the model temperature. 

This allows us to control the temperature of the gas and analyze its effect on the distribution. 

Intuitively, the greater the temperature the more disparate the velocity values are and vice versa. 

Then we construct histograms of the velocity component or speed where the height of a column 

measures the empirical probability for the corresponding interval. Thus, we obtain the simulated 

discrete PDF that is then compared with the respective theoretical PDF. This algorithm can be 

easily implemented in the Matlab/Octave platforms. The codes with detailed comments can be 

found in the Appendix section. 

Results 
One–dimensional ideal gas 

Let we report initially the results from the simulations of the Maxwell’s distribution for the one–

dimensional ideal gas. The respective code is shown in the Appendix section. In all the 

distributions shown in Figure 4, the model temperature is n = 300. The conversion to the 

thermodynamic temperature scale can be done easily by knowing the molar mass of a given gas. 

However we should be careful with the chosen value of n in accordance to the computational 

limitations of the computer used for the simulations. 

 
Figure 4. Here are shown the Maxwell’s distribution for the one–dimensional ideal gas for different 

number of molecules. The model temperature is the same n = 300. The number of molecules is 500 

(panel A), 5000 (panel B), 20000 (panel C) and 60000 (panel D). The velocity component magnitude 

is extended to 5.5 times the standard deviation. The red curve represents the theoretical Maxwell’s 

distribution for one dimension. The legend shown in panel C is the same for all the other panels as 

well. 
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Visually it is quite easy to determine which simulations are quite close to the theoretical Maxwell’s 

distribution and which are not. For instance, the simulations in panel C and D (Figure 4) are 

quite close to the theoretical curve compared to the simulations shown in panels A and B. 

However, there is needed to be used a quantitative test to better evaluate the outcome of the 

simulation. The Maxwell’s distribution for the one–dimensional gas is simply a normal 

distribution. The area under the PDF curve for a given interval represents the probability for the 

variable to be in that interval. Also, it is a well–known fact that the probability for the variable to 

be in the interval [𝜇 − 𝜎, 𝜇 + 𝜎], where μ and σ are respectively the mathematical expectations and 

standard deviation of the distribution (Feller, 1957; Boriçi, 2019), is 68.27 %. Recall that n 

. The same argument can be used for the intervals [𝜇 − 2𝜎, 𝜇 + 2𝜎] and [𝜇 − 3𝜎, 𝜇 + 3𝜎] as well. 

For these intervals the respective areas under the curve are respectively 0.9545 and 0.9973. We 

can use these facts to analyze the nature of the simulated distributions. 

The area under the distribution in panel A for the interval [𝜇 − 𝜎, 𝜇 + 𝜎] is 0.7000 or 70.00 %. 

The probabilities for the other distributions are respectively 64.56 %, 67.46 % and 67.42 %. In 

the first simulation we can see that more molecules are concentrated in the central hill of the 

distributions, while further away from the symmetry axis the number of molecules having the 

respective speeds is notably smaller that in theory. This explains the higher probability found. 

The opposite is observed in the second simulation where the central hill is lower than the 

theoretical prediction. For the other simulations the variations are minimal. The discussed results 

are for the specific simulated distributions shown in Figure 4. For another set of simulations the 

results would be different; after all there are involved random numbers. In order to obtain more 

robust results, there should be analyzed many simulations for one combination of n and N, 

something that can be left as a work for the student. 

A rather interesting result of the simulations is the ability to model the effect the change in 

temperature has on the distribution. The greater the temperature is the greater the average kinetic 

energy of the molecules. Hence, the fraction of molecules having larger velocities is higher the 

higher the temperature. As a consequence the theoretical curve should widen and at the same 

time the central hill should become lower (Figure 5). Mathematically the larger the temperature 

is the larger the standard deviation is, hence n is larger. Therefore, the results shown in Figure 4 

are pretty much expectable. However, the real motivating results are found for the simulations 

of the ideal gas two and three dimensional where the effect of temperature on the distribution is 

reproduced effectively 

Before we proceed to the next paragraphs, we should make an important remark regarding the 

nature of the simulations shown in this paper. They do not present the thermodynamic evolution 

of the system. The ideal gas does not start in a given initial state out of equilibrium and we do 

not follow its evolution toward this state. The ideal gas is already in the thermodynamic 

equilibrium state and it possesses the temperature T. Clearly the approach discussed in this paper 

works well for a relatively large number of molecules N. However, due to computational 

confinements N cannot take an unlimited value and it depends on the properties of the computer. 

In spite of such limitations, we have seen from many simulations that for N > 10,000 the 

simulated distributions are reasonably close to the theoretical curve. This value of N is far away 

from the actual number of molecules even in a small quantity of gas and yet the distribution of 

molecules versus the speed vx is already very close to the theoretical Maxwell’s distribution. This 

very fact provides evidence in support of the accuracy of the assumptions that led to the 

distribution formula. 

 
Figure 5. Maxwell’s distribution for the one–dimensional ideal gas for different model temperatures. 

The number of molecules in each case is N = 20,000. The model temperature is 100 (red curve), 300 

(green curve) and 500 (black curve). The velocity component magnitude is extended to 5.5 times the 

standard deviation. The curves represent the theoretical Maxwell’s distribution for one dimension in 

each case. 
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Two–dimensional ideal gas 
The procedure followed for the simulation of Maxwell’s distribution for the one–dimensional 

ideal gas is fundamental when increasing the dimensionality of the system. This fact can be seen 

immediately in the codes used for the ideal gas in two (the actual paragraph) and three dimensions 

(next paragraph). 

In Figure 6 are shown four typical simulations of the two–dimensional ideal gas. The number of 

molecules in each case is 500, 5000, 10000 and 50000 and the model temperature is the same  

n = 300. Interestingly, the simulated distributions do not appear to be very different from each 

other and the increase in N seems virtually irrelevant in the appearance of the histogram. Actually 

it seems to be a specific feature for this dimensionality. For instance, the simulated distributions 

for the one– and three–dimensional cases are visibly different. 

 
Figure 6. Maxwell’s distribution for the two–dimensional ideal gas for different number of molecules. 

The model temperature is the same n = 300. The number of molecules is 500 (panel A), 5000 (panel 

B), 10000 (panel C) and 50000 (panel D). The speed magnitude is extended to 5.5 times the standard 

deviation. The red curve represents the theoretical Maxwell’s distribution for two dimensions. The 

legend shown in panel C is the same for all the other panels as well. 

In order to better analyze the nature of each simulated distribution, we need to describe a 

procedure that can provide quantitative results. This procedure is based on formulae (12) and 

(20) for the 3D gas; these expressions relate the average speed with the model temperature n. to 

find the average speed we exploit the discrete nature of the simulated distributions. For instance, 

the simulated distribution actually is a discrete probability distribution. The number in the x axis 

pertains to the speed in model units, while the height of the column corresponds to the empirical 

probability for each value of the speed. The average speed is then found straightforwardly. 

Afterwards we use the value found to evaluate the empirical values of π, following (12). The closer 

this empirical value is to π, the closer the simulated distribution is considered to be to the 

theoretical Maxwell’s distribution. 

We have evaluated the empirical value of π for each simulated distribution shown in Figure 6. 

For the distribution in panel A the difference between the empirical and the theoretical value of 

π is 1.50 %. For the simulated distributions shown in the subsequent panels, the difference is 

respectively 1.26 %, 0.77 % and 0.06 %. Obviously the increase of the number of molecules N 

will decrease the difference between the empirical and theoretical values of π. Thus, despite the 

visual similarities between the simulated distributions, the quantitative procedure we followed 

distinguishes them pretty clearly. Similarly as for the one–dimensional case, the values of 

difference found are for the shown distributions. In order to have a far more robust evaluation, 

the student has to perform many simulations, calculate the relative difference for each case and 

then find the average value together with the respective error. This process can be assigned to 

students as an effective class work in order to increase their understanding about computer 

generated random numbers and how to interpret the simulations based on them. 

The effect of temperature on the simulated distributions is investigated as well and they are shown 

in Figure 7. The red curve pertains to the case with model temperature n = 100, the green curve 

to n = 300 and the black curve to n = 500. A higher temperature means a greater fraction of 

molecules with larges kinetic energy. Therefore the peak of the distributions should move toward 

higher speeds. Meanwhile, due to the constant number of molecules in the ideal gas, the height 

of the distribution should be lower. Mathematically, the area under the curve should remain 

constant and the changes that the curve is subjected to make possible such feature. Therefore, 

the approach followed by us results to be effective in reproducing this important feature of 

Maxwell’s distribution. 
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Figure 7. Maxwell’s distribution for the two–dimensional ideal gas for different model temperatures. 

The number of molecules in each case is N = 25,000. The model temperature is 100 (red curve), 300 

(green curve) and 500 (black curve). The speed magnitude is extended to 5.5 times the standard 

deviation. The curves represent the theoretical Maxwell’s distribution for two dimensions in each 

case. 

Three–dimensional ideal gas 
We follow a very similar procedure to the three–dimensional gas. The simulated distributions are 

shown in Figure 8. The number of molecules in each case is 500, 5000, 10000 and 25000. One 

can choose higher values of N, but needs to use sources with higher computational power. Again 

the model temperature is the same for all simulations and is n = 300. Differently from the 2D 

case, the simulated distributions show a qualitative visual improvement as N increases. 

The quantitative procedure explained in the previous paragraph is based on expression (20) for 

the 3D gas. Again we have calculated the relative difference between the empirical, associated 

with the distribution, and theoretical value of π for each simulated distribution. The differences 

are respectively (starting from panel A) 0.81 %, 0.71 %, 0.18 % and 0.06 %. Similarly as for the 

2D gas, the increase of the number of molecules N decreases the relative difference between the 

empirical and theoretical values of π, as expected. However, it is noticeable that the relative 

change is usually smaller for the 3D gas than for the 2D gas simulations. This is related to the 

fact that we use consistently more computer generated random numbers in the former case. 

Again, the values of relative difference found pertain to the specific simulated distributions shown 

in Figure 8. Therefore, there is needed to perform numerous simulations, find the relative 

difference for each of them and afterward calculate the average of all the found values and the 

respective error. 

 

Figure 8. Maxwell’s distribution for the three–dimensional ideal gas for different number of 

molecules. The model temperature is the same n = 300. The number of molecules is 500 (panel A), 

5000 (panel B), 10000 (panel C) and 50000 (panel D). The speed magnitude is extended to 5.5 times 

the standard deviation. The red curve represents the theoretical Maxwell’s distribution for two 

dimensions. The legend shown in panel C is the same for all the other panels as well. 
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As in the previous paragraphs, we investigate the effect the change in temperature has on the 

simulated distributions (Figure 9). The number of molecules is fixed at 25,000, while the model 

temperatures are n = 50 for the red curve, n = 150 for the green curve and n = 400 for the black 

curve. Again we mention that all the combinations shown here are for practical demonstrations 

and no specific real world situations is associated to them. As for the 2D gas, the higher the 

temperature, the lower the peak and the more it is shifted toward the higher speeds. 

 

Figure 9. Here are shown the Maxwell’s distribution for the three–dimensional ideal gas for different 

model temperatures. The number of molecules in each case is N = 25,000. The model temperature 

is 150 (red curve), 250 (green curve) and 350 (black curve). The speed magnitude is extended to 5.5 

times the standard deviation. The curves represent the theoretical Maxwell’s distribution for three 

dimensions in each case. 

The simulated distributions for the two– and three–dimensional ideal gas appear to be very 

similar at first sight. However, this is not the case as illustrated in Figure 10. For both simulations 

the number of molecules is N = 25,000 and the model temperature is n = 300. The distribution 

for the 3D gas is shifted on the right, toward higher speeds and the respective peak is lower. The 

molecules of three–dimensional gas have three degrees of freedom compared to the two degrees 

of freedom of the 2D gas. Therefore, the molecules of the 3D gas possess on average more 

kinetic energy than the molecules in two dimensions. This explains why more molecules in 3D 

have higher speeds and why the distribution is shifted on the right. 

 

Figure 10. Maxwell’s distribution for the two– and three–dimensional ideal gas. In both cases the 

model temperature is n = 300 and the number of molecules is N = 25,000. The speed magnitude is 

extended to 5.5 times the standard deviation. The curves in solid line represent the theoretical 

Maxwell’s distribution for each case. 

Pedagogical discussion 
The material discussed thus far can be easily implemented in teaching activities. In an 

introductory physics course the mathematical aspects of the Maxwell’s distribution may be 

omitted and usually only the distribution itself is discussed. However, even if the mathematics is 

carried out extensively, the concept of probability density function or independence against 

orientation in space are not that easy to grasp by students. Following the algorithm discussed 
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here, the lecturer can discuss the ease the underlying physical assumptions that lead to Maxwell’s 

distribution, by even omitting the tedious mathematical calculations. 

The initial steps of the algorithm (see Appendix for details) describe how to simulate the 

different speeds of the molecules/atoms, thus incorporating the assumption that different 

molecules move with different speed. By simulating different components of the velocity, one 

for each dimension, it becomes clear to the students that each of the components are statistically 

equivalent and have the same properties. Finally, by merging them together, we obtain the 

simulated distribution. 

This numerical procedure emphasizes some crucial aspects of Maxwell’s distribution. It becomes 

clear to the students that distributions are statistical in nature and that to be observed the physical 

system needs to have many constituents (atoms or molecules). This is evident in Figures 4, 6 

and 8, where by increasing the number of molecules, the simulated distribution is much closer to 

the theoretical counterpart. Furthermore, the simulations provide a statistical meaning for 

quantities like average speed, most probable speed or root mean square speed. Lastly, the 

simulations make the spatial isotropy tangible to the students. 

We should remark that the material presented in the actual paper is not intended to replace the 

theoretical discussion. Actually, we suggest this approach to be used in one or two lecture classes 

in Thermodynamics classes to show how the Maxwell’s distribution is natural in a system like the 

ideal gas. 

Discussions and conclusions 
In the present paper we discuss an interesting approach to study the Maxwell’s distribution of 

velocities for the ideal gas in a pedagogically effectively manner. Quite interestingly the numerical 

approach is helpful in simplifying the theoretical exposition. Thus, high school students can be 

extensively presented with such an advanced topic omitting the rather complicated mathematical 

operations. 

The problem of simulating the Maxwell (– Boltzmann) distribution is not recent. There have 

been several papers in the past dealing with various numerical aspects (Ftačnik, et al., 1983; 

Bonomo & Riggi, 1984; Aiello-Nicosia & Sperandeo-Mineo, 1985; Bellomonte & Sperandeo-

Mineo, 1997; Jameson & Brüschweiler, 2020). Some of them deal with the two-dimensional ideal 

gas, where the molecules are considered as rigid disks all identical (Ftačnik, et al., 1983; Bonomo 

& Riggi, 1984; Aiello-Nicosia & Sperandeo-Mineo, 1985). In these papers the authors analyze the 

system from a kinetic perspective, by studying how the system evolves while the molecules collide 

elastically in the Newtonian mechanics framework. Interestingly their motivations was the same 

as the one expressed in this paper: simplify the introduction of students to this specific topic by 

avoiding complicated mathematics and using computers to achieve the goal. 

The authors perform the simulations by considering an initial random positions and velocities 

and then simulate the collisions between them. The authors analyze snapshots at different 

subsequent times. That is different from our approach where we analyze a single snapshot of an 

ideal gas already in equilibrium. The collisions are simulated by using an interaction matrix that 

relates relative velocities before and after the collision event. Also the scattering angles are 

assumed to be uniformly distributed (Ftačnik, et al., 1983; Bonomo & Riggi, 1984). A slightly 

different approach would be to start with randomly distributed molecules with random uniform 

velocities and let the system evolve with time. In every can be calculated the Boltzmann’s constant 

H so that one can determine how close the system is to equilibrium (Aiello-Nicosia & Sperandeo-

Mineo, 1985). Ftačnik, et al., 1983, perform simulations with 5, 10 and 50 molecules and report 

in Figure 2 in their paper 5,000 snapshots. This would be the same as having one snapshot of 

25,000, 50,000 and 250,000 molecules respectively. This is in agreement with our results because 

we observe that the numerical distribution is very close to the theoretical one once the number 

of molecules N > 20,000. 

It is observed that the exact form of the initial distribution of velocities does not matter later in 

time when the system approaches equilibrium (Bonomo & Riggi, 1984; Aiello-Nicosia & 

Sperandeo-Mineo, 1985). Apparently the Maxwell distribution is just another manifestation of 

the Second Law of Thermodynamics and it can be proven numerically as well (Bellomonte & 

Sperandeo-Mineo, 1997). A more statistical approach is followed recently (Jameson & 

Brüschweiler, 2020) where the authors obtain the Boltzmann probability law, a special case of 

which is the Maxwell distribution law, just by allowing the gas to evolve to equilibrium from some 

random initial conditions. In all the above-mentioned studies, the gas evolvers toward the 

equilibrium state. The kinetic mechanism consider makes the simulations more challenging and 

the codes used more complicated for students. Our approach instead considers only equilibrium 

and is based on the much simpler notion of uniformly distributed random numbers. Thus, the 

codes are much easier and can be readily used by students even in high school. 

The simulations in the present paper capture interesting features of the Maxwell’s distribution 

for different dimensionalities. The most important aspect is that by increasing the number of 

molecules in the simulation, the closer the simulated and theoretical distributions are. Ideally the 

complete fit happens when the number of molecules goes to infinity. In practice, it suffices that 

the number of molecules N > 20,000. However by increasing the computational capabilities, one 

can obtain a better between simulated and theoretical distributions. 

The effect of temperature on the shape and peak location of the distribution is captured 

excellently by the actual numerical approach. The increase of the model temperature n, correctly 

displaces the peak of simulated distribution toward the higher velocities, i.e. higher energies, 

coinciding with the theoretical considerations. In order to perform simulations for ideal gas in 

room temperature, n should be as high as 86,000. Considering the numerical algorithm explained 
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in section 3.2, the generated matrix should have large dimensions. This can be easily performed 

in powerful computer. However it is not necessary in confirming the effectiveness of the actual 

approach because the required values of n and N are much lower. 

In order to compare quantitatively the simulated and theoretical distributions, we exploited the 

average speeds formulas. We isolated π in each case and then we evaluated the empirical value of 

π for each simulation in two and three dimensions. Generally we observed that by increasing the 

number of molecules the relative difference between the theoretical and empirical π values 

becomes increasingly smaller. Thus, we can use the simulations as a numerical experiment to 

actually obtain approximations of π. 

In this paper we analyzed the distribution for the ideal gas, which molecules possess only kinetic 

energy. It is rather interesting to analyze the gas in the homogeneous gravitations field, where the 

molecules possess also potential energy. There are works published in this direction that obtain 

the barometric formula for a gas composed of colliding massive points. The simulations actually 

demonstrate how the system evolves from a cluster of uniformly distributed molecules to a 

stratified one according to the barometric formula (Pantellini, 2000). This work is performed in 

the framework of the kinetic theory. We will analyze the barometric formula with our approach 

of the gas in equilibrium. Again, the aim will not be to show how the gas state evolves through 

time, but to directly analyze the equilibrium state. Thus, we will consider this more realistic 

physical system in a forthcoming paper. 

We believe that numerical algorithms should become an integral part of teaching physics. They 

make difficult topics easier to understand and emphasize crucial aspects. Furthermore, they show 

students there are alternative ways of studying physical phenomena. 
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Appendix 
Below you can find the codes that we have used for the simulations discussed in the actual paper. 

The crucial explanations are positioned as comments (underscored) in each script (Boriçi, 2019). 

maxwell1.m 

 

n=300;N=50000; % Sample combination 

Z=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

v_x=sum(Z); % Velocity component generation 

r_max=5.5*floor(sqrt(n));r_step=max(1,2*floor(r_max/100)); % Maximum 

value of speed, up to 5.5 times standard deviation. There should be a 

careful choice for large n 

r=-r_max:r_step:r_max; % Interval along the x axis 

y=exp(-r.^2/2/n)/sqrt(2*pi*n); % theoretical function 

h=hist(v_x,r); % Non-normalized empirical probabilites 

x=r(h~=0); h=h(h~=0); % The zero’s are excluded 

p=h/(diff(x)*h(2:end)'); % Normalized empirical probabilites 

bar(x,p) % Plot of simulated data 

hold on 

plot(r,y,'r') % Plot of theoretical function 
 

area_under.m 

 

q=cumsum(p);  

k=(x<-sqrt(n)); % Area under curve for x < -σ 

a = q(sum(k))/q(end) 

l=(x>sqrt(n)); % Area under curve for x > σ 

b = q(sum(l))/q(end) 

prob = 1 - a – b % Area under curve for -σ < x < σ 

% The operations are repeated in the same way for 2σ and 3σ 

maxwell2.m 

 

n=300;N=50000; % Sample combination 

Z1=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

Z2=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

v_x=sum(Z1);v_y=sum(Z2); 

v=sqrt(v_x.^2+v_y.^2); % Speed generation 

r_max=5.5*floor(sqrt(n));r_step=max(1,2*floor(r_max/100)); % Maximum 

value of speed, up to 5.5 times standard deviation. There should be a 

careful choice for large n 

r=0:r_step:r_max; % Interval along the x axis 

 

for i=1:r_max+1 

y(i)=2*pi*r(i)*exp(-r(i)^2/2/n)/(2*pi*n); % theoretical function 

end 

 

h=hist(v,r); % Non-normalized empirical probabilites 

x=r; % No need to exclude zero’s 

p=h/(diff(x)*h(2:end)'); % Normalized empirical probabilites 

bar(x,p) % Plot of simulated data 

hold on 

plot(r,y,'r') % Plot of theoretical function 

maxwell3.m 

 

n=300;N=50000; % Sample combination 

Z1=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

Z2=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

Z3=2*(rand(n,N)>0.5)-1; % Generation uniformly distributed 1’s and -

1’s 

v_x=sum(Z1);v_y=sum(Z2);v_z=sum(Z3); 

v=sqrt(v_x.^2+v_y.^2+v_z.^2); % Speed generation 

r_max=5.5*floor(sqrt(n));r_step=max(1,2*floor(r_max/100)); % Maximum 

value of speed, up to 5.5 times standard deviation. There should be a 

careful choice for large n 

r=0:r_step:r_max; % Interval along the x axis 

 

for i=1:r_max+1 

y(i)=4*pi*r(i)^2*exp(-r(i)^2/2/n)/(2*pi*n)^(3/2); % theoretical 

function 

end 

 

h=hist(v,r); % Non-normalized empirical probabilites 

x=r; % No need to exclude zero’s 

p=h/(diff(x)*h(2:end)'); % Normalized empirical probabilites 

bar(x,p) % Plot of simulated data 

hold on 

plot(r,y,'r') % Plot of theoretical function 

 

 
 


