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Abstract  
Interpreting experimental data in high school experiments can be a difficult task for students, especially 

when there is large variation in the data. At the same time, calculating the standard deviation poses a 

challenge for students. In this article, we look at alternative uncertainty measures to describe the variation 

in data sets. A comparison is done in terms of mathematical complexity and statistical quality. The 

determination of mathematical complexity is based on different mathematics curricula. The statistical quality 

is determined using a Monte Carlo simulation in which these uncertainty measures are compared to the 

standard deviation. Results indicate that an increase in complexity goes hand in hand with quality. 

Additionally, we propose a sequence of these uncertainty measures with increasing mathematical complexity 

and increasing quality. As such, this work provides a theoretical background to implement uncertainty 

measures suitable for different educational levels.  
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1. Introduction 

A measurement uncertainty quantifies the doubt about the validity of an experimental result and 

is an indication of the quality of the data. Additionally, it allows for a comparison of experimental 

results or models within a certain degree of confidence. In today’s society, being able to judge the 

quality of data and making decisions based on it, is a skill that is gaining more and more 

importance (Chinn & Malhotra, 2002; Holmes et al., 2015; Sharma, 2006). However, the topic of 

measurement uncertainties is rarely addressed at high school level (Priemer & Hellwig, 2018; 

Möhrke, 2020). Often, the calculation of the uncertainty (most often the standard deviation) 

proves difficult for students and consequently takes the focus away from the interpretation of 

the result (Zangl & Hoermaier, 2017). Priemer and Hellwig (2018) suggest the total span of the 

measurements as an uncertainty interval. This simplifies the calculation and allows for more focus 

on the interpretation. The downside is that this measure is highly susceptible to outliers. 

We conceptualize the standard deviation and the total span of measurements as two extremes in 

a range of possibilities to describe the variation of measurement data. In this article, we look at 

the usability of several alternative uncertainty measures which are based on existing measures of 

spread. These measures will be easier to determine than the standard deviation, in terms of 

mathematical complexity, but yield better quality results than the total span. We base the 

complexity on the mathematics curricula and the quality on the results of our Monte Carlo 

simulation. Our work aims to build a foundation to introduce quantitative measures for 

measurement uncertainties in education. We analyze their properties and discuss advantages, 

disadvantages, and limitations from a didactical perspective. Thus, we argue, that our results are 

a necessary prerequisite to develop educational reconstructions, teaching material, or empirical 

studies regarding measurement uncertainties. 

We start with an overview of the literature regarding measurement uncertainties within science 

and statistics education research in section 2. The alternative uncertainty measures are presented 

in section 3. Section 4 describes the Monte Carlo simulation in which a main set of measurements 

is generated. The alternative uncertainty measures are then calculated from subsamples and 

compared with the standard deviation of the main set. The criteria for usability are described in 

Section 5. Results are presented in section 6 and discussed in section 7.  

  

State of the literature  
 Judging the quality of data and interpreting data is a competence that is growing in importance in 

everyday life. 

 Students experience a lot of difficulties with the interpretation of measurement uncertainties. 

 Calculating the standard deviation proves difficult but an automated process of calculating it takes 

the focus away from the interpretation of the result. 

Contribution of this paper to the literature  
 This article presents several alternative quantitative measures to express the measurement 

uncertainty (measure of spread). 

 These measures are examined in terms of mathematical complexity and statistical quality. 

 A sequencing of these measures is presented to help introduce the topic of measurement 

uncertainties, leaving the focus on its interpretation. 
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2. Theoretical Framework 
Working with variation in data can be seen as a core practice of statistical thinking. Moore (1990) 

describes statistical thinking as an awareness of the omnipresence of variation in processes, the 

need for data, an awareness of the sources of variation, the quantification of variation, and the 

explanation of variation. Given that students experience difficulties in understanding basic 

statistical quantities like variance (Garfield & Ben-Zvi, 2007; Torok & Watson, 2000) it becomes 

obvious that they face similar difficulties with the meaning of measurement uncertainties (Kok 

et al., 2019; Lubben et al., 2001; Séré et al., 1993). Because measurement uncertainties are 

mathematically expressed by measures of spread, knowledge about statistics is necessary to 

understand the meaning and implication of measurement uncertainties. However, it is not 

sufficient. Buffler et al., (2001, p.1151) indicated that the ability to calculate means and 

uncertainties does not imply an understanding of the statistical nature of these measurements. 

Even if technical obstacles in estimating uncertainties are eliminated it is still a challenge for 

students to grasp the meaning of uncertainties. Zangl and Hoermaier (2017) developed a digital 

tool for students to calculate the mean, standard deviation, and propagation of uncertainties. This 

shifted university students’ attention from calculating the uncertainty to the interpretation of the 

result. However, the disadvantage they noted was that, because of the automated calculation, 

students appear to lose the feeling for whether or not the outcome is of the correct magnitude. 

This shows that there is an interplay between the formal statistics calculations and the 

interpretation of measurement uncertainties. A notion supported by Casleton et al., (2014), who 

confirmed a strong link between the understanding of measurement uncertainties and the 

appreciation of the value of statistics.  

2.1 Students’ Difficulties in Understanding the Concept of Variation 
The subject matter model by Priemer and Hellwig (2018), describes the contents needed to call 

attention to the relevance of measurement uncertainties in secondary education. Although the 

model mentions a measure of spread, the model is independent of this specific measure, mostly 

because the interpretation of the measurement result is independent of the chosen measure of 

spread (see also Torok & Watson, 2000, p.166). The model can be used to identify students’ 

difficulties in understanding measurement uncertainties. Here, we focus on the dimension 

“assessment of uncertainties” which includes the concept of variation. 

As described in the Guide to the Expression of Uncertainty in Measurement (GUM, Joint 

Committee for Guides in Metrology, 2008), the uncertainty in a type A analysis –i.e., the statistical 

analysis of repeated measurements– follows from the probabilistic distribution of these 

measurements. As the repetition of measurements is a means to see this distribution, it is no 

surprise that students on different educational levels find it hard to perceive the need for repeated 

measurements (Allie et al., 1998; Lubben & Millar, 1996; Séré et al., 1993). They often regard the 

repetition of measurements as a means of practicing one’s measurement skill or as a verification 

of previous measurements (Buffler et al., 2001). This corresponds to what Lubben et al., (2001) 

have called the point-paradigm. In the point paradigm, students regard measurements as isolated 

events and the mean value as the “true” outcome of the experiment. Whereas in the set-paradigm, 

students regard the measurement series as a whole, indicating a range in which the measured 

quantity can be expected. 

However, a set-based argumentation with data seems to pose problems for students. In a study 

10–14 years old students were asked to investigate the (non-)covariation of variables in an 

experiment (Kanari and Millar, 2004). It was found that students experience difficulties, especially 

in the non-covarying cases, due to a lack of understanding of measurement uncertainty. 

Lubben and Millar (1996) give a good summary of the different views students have on repeated 

measurements and variation. They indicate eight levels of students’ understanding of the 

collection and evaluation of empirical data that range from “measure once and you will get the 

right value” to repeated measurements to get an indication of the best estimator and its spread. 

2.2 Approaches in Teaching the Concept of Variation 
Despite the difficulties that students have in understanding measurement uncertainties, there are 

indications that students can reason with and identify (components of) uncertainties as early as 

third grade (Gal et al., 1989; Masnick & Klahr, 2003; Metz, 2004; Petrosino et al., 2003). 

Ford (2005), Munier et al., (2013), Pols et al., (2019) report lively discussions where students are 

encouraged to think about the credibility and limitations of their results. In all cases, students 

realize that reporting an indication of the uncertainty will be necessary. In the case of Munier et 

al., (2013), this is even done in a quantitative manner. 

The above examples are encouraging as they show that young students are, with help, able to see 

the necessity of discussing measurement uncertainties as well as identify (sources of) 

measurement uncertainties. What these studies lack, however, is an agreed-upon quantification 

of the uncertainty. This would allow the students to compare their results and judge the quality 

of their experiment. 

Garfield and Ben-Zvi (2005) have constructed a framework for teaching and assessing reasoning 

about variability. Although this framework mentions different measures of variability (standard 

deviation, interquartile range, and range), it is limited in the sense that the differences are stated 

by mentioning what they should measure. No assessment is made about the quality of these 

measures in situations with small sample sizes —common for high school experiments. 

In the science education literature, we have found no research-based recommendations for using 

measures of spread suitable to express measurement uncertainties, despite the necessity to teach 

about measurement uncertainties in schools. From this, we conclude that there is a need for 

practical uncertainty measures that have a fitting complexity and yield good quality results. With 
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complexity, we mean the mathematical complexity and the ease of calculation. With quality, we 

mean how well the uncertainty measure describes the variation of the measurements as compared 

to the standard deviation. The next section lists the uncertainty measures –all based on existing 

measures of spread– that we have selected for our comparison. 

In this article, we interpret all measures of spread as quantifications of measurement uncertainties. 

Therefore, we use the terms uncertainty measure and measure of spread synonymously. 

3. Uncertainty Measures 
The calculation of each of the uncertainty measures (i.e., quantified measure of spread) starts with 

the calculation of the arithmetic mean: 

�̅� =
1

𝑁
∑ 𝑥𝑖𝑖   (1) 

where 𝑥𝑖 is one measurement, and N is the number of repeated measurements. 

Min-Max 
The min-max uncertainty is an adaptation of the range, which is the total span of the 

measurement series (Barlow, 1993, p.12). To make this range symmetric, we take the uncertainty 

to be the largest distance between the minimum or maximum of the measurement series as 

compared to the mean, similar to what is suggested by Priemer and Hellwig (2018). 

We do this by first sorting the samples from small to large: {𝑥1, … , 𝑥𝑁} and taking the maximum 

value of the mean minus the smallest value and the largest value minus the mean: 

𝑢min−max = max(�̅� − 𝑥1, 𝑥𝑁 − �̅�). (2) 

Exclude Extremes 
The procedure for this uncertainty measure is the same as the min-max uncertainty, except that 

the minimum and maximum value of the measurement series are excluded in the determination 

of the uncertainty, reducing the influence of outliers. The uncertainty is then calculated using the 

set {𝑥2, … , 𝑥𝑁−1}:  

𝑢excl.extr. = max(�̅� − 𝑥2, 𝑥𝑁−1 − �̅�). (3) 

Middle 50% 
To calculate the uncertainty for the middle 50%, we again sort the measurements from small to 

large. Then, the minimum and maximum values are excluded one pair at a time, as long as the 

remaining measurements constitute to 50 % or more of the original measurements. The 

uncertainty is then calculated using the set {𝑥𝑁/4, … , 𝑥𝑁−𝑁/4} where 𝑁/4 will always be 

rounded down: 

𝑢middle50% = max(�̅� − 𝑥(𝑁 4)+1⁄ , 𝑥𝑁−N/4 − �̅�). (4) 

Mean Absolute Deviation 
The mean absolute deviation (MAD, see e.g., Barlow, 1993) is calculated by taking the mean of 

the absolute values of the difference between the measurements and the mean value: 

𝑢MAD =
1

𝑁
∑ |𝑥𝑖 − �̅�|𝑖 . (5) 

Standard Deviation 
Lastly, we can calculate the sample standard deviation of the measurement series: 

𝑢SD = 𝜎𝑥 = √
∑ (𝑥𝑖−�̅�)

2
𝑖

𝑁−1
. (6) 

3.1 Other Uncertainty Measures 
We have limited ourselves to the previous uncertainty measures. There are of course other 

(established) measures of spread that could have been used to create an uncertainty measure. For 

instance, the interquartile range (IQR, see e.g., Barlow, 1993) or discarding different percentages 

of data. 

In practice, these and other measures yielded no better results than our selection of alternative 

uncertainty measures, as we will show in the discussion in section 7.1. For the sake of clarity, we 

will constrain ourselves to the above measures in our analysis. 

4. Monte Carlo Simulation 
The Monte Carlo method is a computational method where the numerical simulation of an 

experiment is repeatedly executed, using input parameters with random values from a given 

probability distribution. It can be used to simulate experiments thousands of times to probe the 

effect of the different input parameters but also to probe measurement uncertainties in 

experiments (Brandt, 2014). We will use the Monte Carlo method, programmed in Python 2.7.15, 

to calculate the alternative uncertainty measures and probe their behavior (see supplemental 

material). 

We start the simulation by generating a random set of 𝑁set = 1,000 normally distributed values. 

This set represents measurement data that could have been obtained in an experiment if the 

measurements were repeated 1,000 times. Assuming the distribution to be a normal distribution 

is valid under the central limit theorem (in short: the sum of 𝑥𝑖 becomes a normal distribution 

for large 𝑁, see also Cowan, 1998, p. 147). We assume this to hold for experiments in an 

educational setting, even with a small number of measurements (Taylor, 1997). As such, our set 

consists of 1,000 normally distributed values with a known mean 𝜇set and standard deviation 

𝜎set. This standard deviation will be the reference value with which we shall compare the 

alternative uncertainty measures.  
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Next, we take a random subsample size with an initial 

value of 𝑁 = 4 values from this set –representing four 

repeated measurements of an experiment. Using this 

subsample, we calculate the values of each of the 

alternative uncertainty measures. 

To compare the alternative uncertainty measures with the 

standard deviation of the set (being the reference value 

describing the spread of the data), we define the uncertainty 

deviation: the difference between the alternative uncertainty 

measure of the subsample and the standard deviation of 

the complete set 𝜎set divided by the standard deviation 

of the complete set: 

Δ𝑖 ≡
𝑢𝑖−𝜎set

𝜎set
 (7) 

where 𝑢𝑖 is one of the alternative uncertainty measures 

calculated from the subsample. Note that by doing this, the uncertainty deviation is independent 

of the values of the set parameters: 𝜇set and 𝜎set. Consequently, the results of this simulation 

are valid for all normal distributions. 

The process of taking subsamples and calculating uncertainty deviations is repeated 10,000 times. 

What follows is a distribution of uncertainty deviations for the alternative uncertainty measures, 

from which we calculate the means and standard deviations. 

We repeat the procedure for subsample sizes in the range of 𝑁 = [4; 20], typical numbers of 

repeated measurements in school experiments. 

We then plot the mean value of the uncertainty deviation and its standard deviation as a function 

of 𝑁. This shows how the different uncertainty measures develop for different values of 𝑁 and 

indicate the quality of these uncertainty measures.  

The whole procedure of the Monte Carlo simulation is summarized in Figure 1. 

Figure 2 shows the development of the mean value of the uncertainty deviation as a function of 

the number of repetitions for our alternative uncertainty measures, using a subsample size of 

𝑁 = 10, a common number of repetitions for high school experiments. From the figure, it can 

be seen that this mean uncertainty deviation stabilizes after 1,000 repetitions, indicating that our 

10,000 repetitions will more than suffice. 

 

 
Figure 2. The development of the mean uncertainty deviations as a function of the number of 

repetitions, for a subsample size of 𝑁 = 10. The values stabilize after 1,000 repetitions. 
  

 

Figure 1. A schematic flow-chart of the Monte Carlo simulation. 
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5. Classification 
We classify the usability of the alternative uncertainty measures based on two categories: their 

complexity, i.e., the mathematical complexity in the calculation and their quality, how well the result 

describes the variance in the data. 

5.1 Complexity 
As described by Zangl and Hoermaier (2017), the more emphasis students put on the calculation, 

the less emphasis they put on the interpretation of the result. We, therefore, suggest arranging 

the alternative uncertainty measures based on the complexity of the mathematical operations. 

The Common Core Standards for Mathematics (USA), Rahmenlehrplan Sek I Mathematik 

(GER), and the Kerndoelen Wiskunde (NLD) all show a similar structure for the middle school 

mathematics curricula (National Governors Association Center for Best Practices, 2010; LISUM, 

2018; van der Zwaart, 2007). They all start with addition and subtraction around first grade, 

continue with multiplication of small numbers after third grade, and introduce the square root 

around eighth grade. The mean, median, modus, and absolute values are introduced around sixth 

grade. The Common Core Standards for Mathematics also mentions the IQR and MAD as a 

means to describe variability in data in sixth grade (p. 39). The standard deviation, however, is 

introduced at the high school level (p. 81). 

Based on the sequencing in these mathematics curricula, we classify the complexity of the 

uncertainty measures based on mathematical operations: sorting, addition and subtraction, 

multiplication and division, absolute value, and squaring and rooting. The more advanced the 

mathematical operations, the higher the complexity of the uncertainty measure. 

5.2 Quality 
The quality of the uncertainty measure depends on how well this measure describes the variability 

of the data. The quality of an estimator is usually expressed in terms of bias, consistency, and 

efficiency and usually in that order (see e.g., James et al., 2007, p.128; Cowan, 1998, p.65; Barlow, 

1993, p.68). 

Bias indicates the difference between the expected value of an estimator 〈�̂�〉 and the value of 

what is being estimated 𝑎. The bias is calculated as: 𝑏 = 〈�̂�〉 − 𝑎. Consistency indicates whether, 

with increasing values of 𝑁, the estimator �̂� approaches the estimated value: lim
𝑁→∞

〈�̂�〉 = 𝑎. The 

efficiency is a measure of the variance of an estimator. 

In this case, the estimators �̂� are the alternative uncertainty measures 𝑢𝑖 . The value we are trying 

to estimate a is the standard deviation of the set 𝜎set. As such, the bias is given by the uncertainty 

deviation Δ𝑖  but in a general form, as it is expressed in standard deviations (see equation (7)). We 

call this parameter the deviation bias. Because the uncertainty deviations will change for different 

values of 𝑁, we compare the deviation bias in the limit of 𝑁 → ∞. When the value of the 

deviation bias fails to stabilize to a consistent value, the uncertainty measure will be labeled: 

biased. 

To describe the consistency, we use two derived quality parameters: convergence and smoothness. 

Convergence describes whether our alternative uncertainty measures will, for larger values of 𝑁, 

converge to a certain value. Due to deviation bias, this value does not necessarily need to be the 

standard deviation of the set 𝜎set . 

The smoothness parameter indicates whether the uncertainty 𝑢𝑖 in the (Δ,𝑁) –diagram is smooth 

or that its development shows sharp positive and negative “kinks”. The latter would indicate that 

for an increase in 𝑁, the behavior of 𝑢𝑖 could radically change, which is an undesired property. 

Lastly, we describe the efficiency in terms of the spread. We quantify this spread as the standard 

deviation of the uncertainty deviation 𝑆𝐷∆𝑖
 for a subsample size of 𝑁 = 10. This value of 𝑁 is 

chosen because it is a common number of repeated measurements in high school experiments. 

6. Results 
Figure 3 shows the mean uncertainty deviations for all alternative uncertainty measures as a 

function of 𝑁. The highlighted regions indicate the standard deviation of the individual values of 

𝑢𝑖 (i.e., not the standard deviation of the mean). The black line at Δ = 0 indicates the standard 

deviation of the set. 

From this figure, we can see that the standard deviation, unsurprisingly, is the best approximation 

of the standard deviation of the set for all values of 𝑁. The mean uncertainty deviation quickly 

converges towards the black line and the uncertainty of the uncertainty deviation also decreases 

with increasing values of 𝑁. 

The MAD is systematically lower than the standard deviation. This originates from the definition 

of the MAD, which takes the absolute deviations of the mean instead of taking the root of the 

sum of squares. The mean uncertainty deviation also quickly converges to a mean deviation of 

approximately −.23, and the uncertainty decreases with increasing values of 𝑁. 

The middle 50% shows sharp kinks whenever 𝑁 is a multiple of four, corresponding to another 

pair of minimum-maximum-values to be excluded. For higher values of 𝑁, middle 50% converges 

towards the MAD. 

As expected, the min-max uncertainty blows up quickly for larger values of 𝑁. Because we take 

the uncertainty to be the largest distance to the mean using the complete subsample, this measure 

is highly susceptible to outliers, which also explains its high standard deviation. 
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Exclude extremes starts off in the same fashion as the middle 50%, as they use the same 

measurements and uncertainty calculation in the range of 𝑁 = [4; 7]. At high values of 𝑁, 

exclude extremes starts converging towards the min-max. Between subsample sizes 𝑁 = 8 and 

𝑁 = 9, exclude extremes crosses the zero-uncertainty deviation line, indicating –on average– 

almost perfect agreement with the standard deviation of the set. 

 
Figure 3. The mean values (lines) and standard deviations (shaded areas) of the uncertainty 

deviations of the different alternative uncertainty measures 𝑢𝑖 for different subsample sizes 𝑁. The 

horizontal black line indicates zero uncertainty deviation, corresponding to the standard deviation 

of the set. 

The classification of the results in terms of complexity and quality as defined in section 5 is shown 

in Table 1. The uncertainty measures are sorted top to bottom from lowest to highest complexity. 

Simultaneously the quality in terms of deviation bias, convergence, and spread (with the exception 

of the standard deviation) appears to increase along with the complexity. The min-max and 

exclude extremes measures are biased, the middle 50% and MAD each have a limiting value for 

the deviation bias, and the standard deviation has zero bias. 

The only uncertainty measure with a non-smooth behavior is, by design, the middle 50% measure. 

The spread of all measures decreases with increasing complexity (see the last column of Table 

1). With a remarkable behavior for the MAD, which has a spread even lower than the standard 

deviation. This is due to the linearity of the terms in the calculation as compared to the standard 

deviation which uses squared terms. 

Table 1. The classification of the uncertainty measures in terms of complexity and quality. 

 Complexity Quality 

𝑢𝑖 sort add, 

subtract 

multiply, 

divide a 

abs. square, 

root 

dev. bias conv. smooth spread 

Min-max YES YES NO NO NO biased NO YES . 52 

Exclude extremes YES YES NO NO NO biased b NO YES . 35 

Middle 50% YES YES NO NO NO −.34 YES NO . 26 

MAD NO YES YES YES NO −.21 YES YES . 19 

Standard deviation NO YES YES NO YES 0 YES YES . 24 
a Although division is needed in the calculation of the arithmetic mean, this column only indicates the necessity for 

multiplication and/or division in the calculation of the uncertainty. 

b Deviation bias = −.03 for a subsample size of 𝑁 = 8, and . 05 for a subsample size of 𝑁 = 9. 

7. Discussion 
Our results suggest a sequencing of the uncertainty measures for science education, which we 

will discuss after briefly revisiting previously disregarded uncertainty measures. 

7.1 Disregarded Measures 
Looking at Figure 3, we see that the exclude extremes crosses the Δ = 0 line between 𝑁 = 8 

and 𝑁 = 9, yielding a similar result as the standard deviation. This behavior is, however, not very 

surprising. For exclude extremes, the uncertainty for subsample sizes 𝑁 = 8 and 9 is calculated 

using 75% and 78% of the measurements. This comes close to the 68% of measurements that 

one standard deviation includes. 

We further explore this characteristic by adapting the middle 50% and set the percentage to 68% 

(similar to the standard deviation) and 76% (the optimum percentage as extrapolated from the 

exclude extremes line in Figure 3). 

To come as close as possible to this percentage, we will exclude values one by one until the 

number of remaining values in the subset divided by the original subsample size best 

approximates the chosen percentage. The values that are excluded are the values that are farthest 

from the mean (i.e., the largest value of |𝑥𝑖 − �̅�|). The uncertainty is calculated as the largest 

distance from the mean of the remaining subset, identical to the middle 50% procedure. 
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The last measure we compare, is the interquartile range (IQR), the range between the upper and 

lower quartiles. Where the quartiles are the medians of the upper and lower half of the sorted 

measurements. This measure of spread can be made into a symmetric uncertainty measure by 

taking the largest of the two distances from the quartiles to the mean. 

Figure 4 shows that the 76% of measurements oscillates around Δ = 0 in this regime. The 68% 

of measurements converges to the standard deviation only for large values of 𝑁. The spread is 

. 32 for the 76% and . 28 for the 68%, which is both comparable to the middle 50%. 

 
Figure 4. The mean values (lines) and standard deviation (shaded area, middle 50% only) of the 

uncertainty deviations of the different alternative uncertainty measures  𝑢𝑖 for different subsample 

sizes N. The horizontal black line indicates zero uncertainty deviation, corresponding to the standard 

deviation of the set. This figure shows the disregarded measures 68% of measurements, 76% of 

measurements, and the IQR compared with the middle 50%. 

The IQR, unsurprisingly, oscillates around the middle 50% but has fewer kinks. This is due to 

the usage of the median in its calculation. The spread is . 22, which is comparable to the middle 

50%. 

The lines of these three uncertainty measures, with the exception of the 76% of measurements 

line, fall well within the uncertainty region of the middle 50% line. This means that they give 

results of very similar quality. However, the complexity of these calculations is larger; the IQR 

requires medians to be calculated and the exclusion process for different percentages is more 

cumbersome. This renders these three uncertainty measures less useful than the middle 50%. 

7.2 Implications for Teaching 
The parallel increase in quality with complexity that Table 1 shows, allows for a well-founded 

sequencing in uncertainty measures. 

The usability of an uncertainty measure for teachers in experimental settings will depend on how 

well students can understand it. By taking an uncertainty measure with low complexity, students 

will get the best of both worlds: the determination is still done by hand, but simple mathematics 

will keep the focus on the understanding of the measurement result (Zangl & Hoermaier, 2017). 

The trade-off is that the quality with which the variability of the data is described is lower. 

Fortunately, many of the principles of statistical thinking and working with measurement 

uncertainties can be developed independently on the quality of a certain measure, that is, the 

concept of quantifying variance or comparing the variance of data sets (Torok & Watson, 2000, 

p.166). 

To introduce the topic of measurement uncertainties, we recommend that teachers start with the 

min-max measure. This has the lowest complexity and thus provides an accessible way to 

introduce the topic of measurement uncertainties. Students have more room to evaluate their 

results, compare them, and think about the statistical nature of measurements. There are some 

practical materials available that use this definition of uncertainty (Hellwig et al., 2017; Kok & 

Boczianowski, 2021). 

Still, this measure is highly susceptible to outliers, as shown in Figure 3, which should be 

discussed with students. This discussion of outliers will require students to think about the 

statistical nature of measurements and improve their overall understanding of what the 

measurement uncertainty describes. 

Refining the measure to the exclude extremes measure is the next logical step. This measure has 

the same level of complexity, but offers a higher quality, especially in the case of eight repeated 

measurements. 

The discussion of the relevance of repeated measurements can continue with students. Recording 

more measurements will inevitably lead to more outliers, rendering the exclude extremes measure 

also susceptible to outliers for a large number of repeated measurements. At this point, a 

converging measure like middle 50% can be introduced. Instead of 50%, one could also choose 

68% or 76%– these percentages result in a slightly smaller deviation bias –but we feel that 50% 
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will prove easier to determine for students during the step in which measurements are excluded 

from the calculation. 

Ultimately, one will want to move towards using the standard deviation to describe the variability 

of the measurements. As an intermediate step, the MAD could be introduced. The MAD measure 

has some very auspicious characteristics. In contrast to the middle 50%, the MAD is smooth, 

converges quickly, and has the smallest spread of all uncertainty measures (see Table 1). 

Introducing the MAD before standard deviation, as also suggested by Kader (1999), seems a 

logical step. The calculation of the MAD closely resembles the calculation of the mean value as 

well as the standard deviation but without the difficulty of squaring and taking the square root. 

The result –the mean uncertainty deviation– is an intuitive measure that is easier for high school 

students to interpret than the standard deviation. In scientific practice, the MAD is not very 

common. This is due to its horrible behavior when differentiating (Barlow, 1993, p.12). This is, 

however, a flaw that has no real consequences for high school practice. 

As a last step in the series, the standard deviation can be introduced. This is the most complex 

measure and requires a more statistical approach for its interpretation due to the probabilistic 

nature of the Gaussian distribution which it is derived from. Therefore, it is advised to introduce 

this measure only in the upper school. It can easily tie in with the topic of the normal distribution, 

usually taught in the upper school. Additionally, it will prepare students for the formal scientific 

approach to calculate measurement uncertainties. 

For a solid understanding of measurement uncertainties and data analysis, the topic of 

measurement uncertainties needs to be repeated in classrooms whenever appropriate (Munier et 

al., 2013). Only this way, real statistical thinking can be developed, which will also help with their 

appreciation of statistics later on (Casleton et al., 2014). We therefore suggest introducing the 

concept as early as possible and starting with a low complexity uncertainty measure fitting the 

mathematical capabilities of the students. 

Supplemental Material 
The scripts to calculate and plot the results of this work can be found on GitHub: 

https://github.com/karel-kok/uncertainty_measures   
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