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Abstract 
The amount of substance, expressed in the units of moles is an essential concept in chemistry and physics. 
Students entering physics courses usually possess a chemistry background. However, this study showed 
that their understanding of units of matter on the microscopic level is fragile, and needs improvement. 
Research shows that the complexity of interpretations of quantities expressed as ratios; molar mass or 
atomic mass makes formulating a dimensional analysis or proportion of these ratios unclear to students. 
Based on these findings, this study proposes applying equations of fundamental constants and 
proportional reasoning, instead of ratios, as the main building blocks to formulate conversion algorithms. 
In the line of that, a deductively designed lecture was delivered to a group (N=25) freshman college 
physics students. While on the pretest, only (N=4, 16%) correctly converted a mass of a substance 
expressed in kilograms to a number of moles, on the posttest the percentage of correct answers increased 
(N=20, 80%) suggesting that proportional reasoning coupled with fundamental constants brings clarity to 
the process and improves its understanding.  
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Introduction 
A diversity of research ranging from a perspective of psychology learning through historical and 
philosophical views (Niaz, 1989; Furio et al., 2002; Siswaningsih et al., 2017, Feb.) had identified 
several deficiencies associated with an understanding of the mole; (a) students often identify the 
mole with mass, volume, and Avogadro’s number of elementary entities; (b) students avoid 
inserting the abbreviation of the amount in the units of moles, (c) students confuse molar mass 
with molecular mass.  Other studies (Dahsah and Coll, 2007; Musa, 2009; Fach et al., 2006) 
showed students’ weak skills of handling conversion problems involving the mole, mainly, 
when applying the meaning amount of substance.  Johnstone (1971) found out that students 
difficulties with the concept of the mole are widespread and are rooted even in the SI definition 
of the mole. In this line, Fang (2014) suggested that “the research of the past 40 years is that the 

way the mole is conceptualized in educational settings is inconsistent with the meaning of the 
mole expressed in the SI definition” (p. 351). 

Multiple attempts have been made to identify the causes of these difficulties and help students 
understand the concept of the amount of substance and consequently the processes of 
conversions. Uce (2009) used a conceptual change method to develop the mole understanding. 
Bunce (1994) claimed that the problem is rooted in inappropriate teaching strategies. Staver and 
Lumpe (1995) pointed out that the difficulties originated in an insufficient understanding of the 
algorithmic routes applied during conversions. Similarly, Tullberg et al. (1994) found out that 
educators teach the concept of the mole using extensive reasoning methods instead of direct 
algebraic equations. Schmidt (1990) argued that before introducing the concept of mole, 
students must realize that different atoms have different atomic masses. Niaz (1987) suggested 
a closer science and mathematics integration to introducing the idea of the mole. In a similar 
vein, Soon et al. (2011) found out that students do not transfer their algebraic skills to their 
science automatically and suggested a modeling approach to intertwine mathematical tools with 
science concepts. Concurently, Whelan (1977) reached out to educators and called for a closer 
consistency of teaching the concept of mole with the methods presented in the textbooks. 
More recently, Fang et al. (2014) suggested a map concept as a framework for teaching the 
concept of mole and the conversions. They proposed using large rectangular shapes to depict 
schematically the mole and smaller rectangles inserted inside of the larger to represent sub-
concepts such as molar mass or atomic mass. Indriyanti & Barke (2017, August) suggested 
introducing the mole concept by having students count the number of items using weighing. 
The idea of weighting was employed to have students realize that it is not possible to count the 
very large number of particles. Thus the unit of the mole was introduced. This idea of the mole 
conceptualization was earlier exercised by Dominic (1996).  

Milton (2009) suggested introducing a different, more intuitive, definition of the amount of 
substance that measured the size of an ensemble of entities (atoms, molecules, ions, electrons, 
other particles, or specified groups of particles). Scott (2012) concluded that students are 
deficient in their mathematical skills and advocated for improving communication between 
science and mathematics departments to eliminate this deficiency. This study could be 
considered as a response to that call.  Erceg et al., 2016) identified several students’ 
misconceptions about the kinetic molecular theory of gases that could be accounted for a lack 
of understanding of units describing the mass of gas. 

While all findings provided a wealth of suggestions on targeting various weaknesses of the mole 
understanding, each pinpointed a specific aspect of the teaching process rather than suggested a 
more general method.  This study will attempt to encompass all of these suggestions especially 
these suggested by Soon et al. (2011) and Scott (2012) who advocated for more integration 
between algebraic operations and algorithms applied during conversions. 
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Foundations of the Theoretical Framework  
Summary of students’ deficiencies extracted from the prior research 

Prior research findings helped to formulate the test instrument for this study, and consequently, 
they helped formulate the instructional unit (intervention). All prompts generated nine 
suggestions that were summarized in Table 1.  

Table 1. Prompts for formulating the theoretical framework 

Challenges with the mole understanding Suggested interventions 

1. Overemphasized conceptual approaches 

during conversions.  

Using the structure of a proportion and 

equations throughout various types of 

conversions. 

2. High diversity of units used to describe the 

amount of quantities at a microscopic level. 

Introducing the mole as a basic unit of 

amount of substance in the form; 1𝑚𝑜𝑙 =
6.02 × 1023 𝑎𝑡𝑜𝑚𝑠    

3. Lack of systematization of the different units 

of measuring matter.  

Introducing molar mass prior to introducing 

atomic mass. 

4. Overemphasizing the formal definition of the 

mole as regarded to Avogadro’s number and 

the number of particles in carbon-12.  

Introducing the formal definition of the mole 

after students are fluent in basic conversion 

techniques. 

5. Lack of contrasting traditional units of mass 

(kg) with the amount of mass expressed in 

moles. 

Providing students with opportunities for 

contrasting various units of mass and 

embrace it with conversions. 

6. Lack of parallelism to algebraic operations 

while setting up the converting the units of 

mass, e.g., expressed in kg to moles or a 

number of particles. 

Using the idea of constructing proportion and 

the periodic table of elements to find 

reference molar and atomic masses. 

7. Difficulties with interpretations of phrases like 

molar mass or atomic mass because the 

equivalent descriptions (e.g., kilogram mass or 

pound-mass) are not used in sciences.  

Using the phrase mass of 1 mole instead of 

molar mass and mass of 1 atom instead of 

atomic mass and consequently apply these 

statements to build proportions. 

8. Diminished effect of algebraic manipulations 

due to applied detailed dimensional analysis. 

Replacing the process of dimensional analysis 

and simplifying the units using regular 

algebraic algorithms for terms’ reduction. 

9. Lack of connection between atomic mass 

representing the mass of 1 mole of a 

substance. 

Emphasizing mass number (periodic table) as 

representing the mass, in grams, of 1 mole 

of a substance. 

These recommendations guided the conceptual design of the instructional unit. Following these 

recommendations, algebraic structures for the intervention were selected. The review of the 

theoretical foundations of these structures; proportions, rates, and ratios follows. 

Proportional Reasoning, Rates, and Ratios 

The structure of a proportion along with its interpretations and limitations will serve as the 

primary algebraic structure to develop students’ algebraic reasoning that should help them to 

support conversions. Thus an outline of the methodology of constructing proportions as seen 

through the prism of mathematics but enriched to model to support scientific quantities 

follows.  This section can be considered background that is borrowed from mathematics to 

quantify chemical quantities. A similar concept called the laws of proportions (Mansoor & 

Rodrigues, 2001) can be found in the literature. This study introduces the learners to the 

modeling approach of enacting and solving proportions departing from bringing forth the 

theory of equation, fundamental constants, and their scientific interpretations.  Concise 

structures of mathematics will support quantification processes, and corresponding scientific 

embodiments will be derived from the outputs of the computations. 

Proportional reasoning is foundational to many high school and higher levels of mathematics 

(Confrey, 2008) and it is commonly referred to as the capacity to compare the values of two 

quantities within the same system. The conceptual underpinning of proportion is usually 

developed in junior high school (e.g., see Fielding-Wells et al., 2013) and the applications are 

used high school and higher-level mathematics, for example, to build differential equations or 

to algebraically model dependence of two quantities. Research has shown that proportional 

reasoning is more stable with maturity and experience (Clark and Kamii 1996). Therefore its 

more formal structure (Coffield, 2000) is suggested to be used.  

Proportional reasoning denotes reasoning with two quantities (variables) between which there 

exists a linear functional relationship of the form 𝑦 = 𝑚𝑥 where 𝑦 and 𝑥 represent the quantities 

and m represents a proportionality constant often expressed in the form of a constant rate or 

ratio. The proportionality constant, m, can be visualized as the slope or inclination of the a 

corresponding linear function 𝑦 = 𝑚𝑥. The functional representation of proportionality is often 

regarded in mathematics as a dynamic proportionality (Miyakawa & Winsløw, 2009) because the 

function can be used to find many values of the dependent or independent variable if a 

constancy of their rates or ratios within a certain domain is established.  

The other form of proportionality more often applied in problem-solving in mathematics that 

will be used in this study is called a static proportionality or a specific set up that can be used 

for computing a unique value. Static proportionality embeds two different situations within the 

same system of variables. This form of proportionality will dominate in this paper; thus, its 

more in-depth analysis is discussed. Static proportionality or proportion is an equality of two 

rates or two ratios usually with one unknown quantity. Since rates and ratios will also be 

implemented in the instructional unit, let’s also review them. What is the difference between 

ratio and rate?  
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a) The ratio is a quotient of two similar/homogeneous (with the same dimensions/units 

or dimensionless) quantities. For example;  
12m2

6m2 , 
1 kg

2kg
, 

3L

8L
, etc.  

b) The rate is a quotient of two dissimilar/heterogeneous (with different 

dimensions/units) quantities. For example;  
7m2

6s
, 

20kg

5m3 , 
3mol

6L
, etc.  

Ratios and rates can be reduced (or simplified by division) and then the resulted magnitude 

represents a unit ratio or rate called the proportionality constant. For example, 
12m2

6m2 = 2, 

20kg

5m2 = 4 kg/m2. It is to note that in this process, ratios might become dimensionless, however, 

rates retain the units. Both rates and ratios can lead to formulating static proportionalities called 

proportions.  

How to convert a dynamic proportionality into a static one or vice versa? Consider y = mx and  

m =
y1−0

x1−0
=

y1

x1
. Let’s substitute  

y1

x1
 for m in y = mx, thus y =

y1

x1
x. Since a static 

proportionality refers to unique values, then let’s further replace y by y2 and x by x2 and 

rearrange the terms;    

 
y2

x2
=

y1

x1
                                                                              (1) 

Statement (1) represents a static proportionality of two rates. By applying a cross multiplication 

and division, this proportion can be converted to a proportion of two ratios respectively  

 
y2

y1
=

x2

x1
                                                                              (2) 

A static proportion, either containing two rates or ratios, can be formulated only for quantities 

satisfying a condition for a direct proportionality. For example the proportions; 
20kg

5m3 =
x

4m3, or  

4m3

5m3 =
x

20kg
 represent direct proportionality because, from algebra point of view, a 

corresponding dynamic representation will lead to a form y = mx.  It is usually up to the 

students whether they chose equivalence of two rates or two ratios to construct a proportion 

and solve it. Can a static proportionality be formally converted into a dynamic one?  Yes, if one 

of the sides of the proportion contains a rate or ratio and their respective variables, a dynamic 

proportion can be formulated. For example if  
20kg

5m3 =
y

x
 , then y = (4

kg

m3) x, where y represents 

kilograms and x represents meters3.   

In the function representation; y = (4
kg

m3)x, the rate, 4
kg

m3, takes earlier mentioned and more 

sophisticated interpretation as the inclination of the function, known also as slope that is equal 

to 
rise

run
.   Understading proportionality extends beyond setting up proportions and computing 

the value of the missing quantity; it is linked with one of the most fundamental function in 

algebra; a linear function. Realizing its limitations should enhance its applications as regraded 

the domain and scope of this research.  

Method 

This undertaking can be classified a pretest-posttest one group experimental study (Shadish et 

al., 2002) with predominantly qualitative analysis of its results. While having a control group 

would support the validity of the research, furnishing one was not possible, thus one group 

design was used and followed. The instructional unit was developed to address students’ 

deficiencies in handling the mole understanding and its subsequent conversions that were 

located in the prior research findings and also the pretest designed for this study.   

The purpose of the pre-test took a different aim from the traditional; it served as an additional 

source of prompts to design the pedagogy of the instructional unit. The posttest was used to 

assess students’ understanding of the unit of mole and their ability to adapt proportional 

reasoning to conversions and other processes that involved the unit of the mole. 

This study was conducted with a group of 25 (10 females and 15 males) freshman college 

physics students who did have a prior background about the mole and its conversion from high 

school chemistry and physics courses. Most of the students (N=18) were majoring in 

engineering programs and the rest in other like environmental studies. Majority of these 

students (N=20, 80%) were Caucasian, and the rest (N=5, 20%) consisted of other races. The 

students graduated from various high schools. All took part in the study voluntarily.  

Research question  

The following question guided this study:  

Can students adopt the concept of proportion as an algebraic tool to convert and develop an understanding of the 

mole as a unit of substance measure? 

While the prior research findings provided insights into how chemistry students perceive the 

idea of mole and its applications, there was a need to assess their strengths and weaknesses in 

this domain and find out if they can adopt different methods of handling similar tasks. Thus, 

the pretest, which is traditionally used to support the learning effects computations, in this 

study was also used to guide the theoretical design of the treatment. 

Lecture component 
The instructional unit took a form of discovery type lecture. The instructor posited questions, 

asked students for their inputs and then together with the students formulated proportions and 
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proved or disproved students claims. While the unit could be devoted to conceptualizing the 

idea of the mole, a more pragmatic approach was taken to include not only the interpretation of 

the mole as an amount of substance but also to merge it with developing conversion 

techniques. It was assumed that providing students with opportunities to apply the definition 

will not only enhance the conceptual understanding but also illustrate a high diversity of 

conversion types and offer techniques for handling them. The instructional unit was designed 

to last for a typical one class period (55min), and it consisted of several segments organized 

deductively. It began with more general conversions and zoomed gradually into more detailed 

once. The segments were initiated by conceptual questions whose purpose was to integrate 

students’ conceptual understanding before immersing in more formal algebraic conducts.  

Mole as a basic unit of amount of substance 
The idea of the mole is challenging to understand because it does not contain the unit of mass 

such as kilograms or grams even though it measures the amount of substance. The instructor 

initiated the lecture by supporting the need for the mole introduction to science and stated 

that on a molecular level a sample of a known substance could be characterized by its mass (in 

kg) whereas on a microscopic level the sample can be characterized by the number of its 

entities. These are atoms in the case of most elements. Samples of the order of milligrams, or 

less, are needed for microscopic experiments. They contain a vast number of atoms, let us say, 

of an order 1030. Hence, counting atoms as single entities were impossible, and a unit 

representing a more substantial amount was needed. The unit, convenient for calculations and 

laboratory practice, consisting of 6.02 × 1023 atoms were called the mole, and the base quantity 

of which the mole is the base unit bears the name amount of substance. If there are 6.02 × 1023 

atoms in a container, then one can say that there is 1 mole of the atoms in the container. The 

teacher assured that a more formal definition of the unit of 1 mole would be provided later. 

The teacher also pointed out that while the amount of mass must be expressed in the units of 

mass (grams or kilograms etc.), the phrase amount of substance, that does not contain the term 

mass, does not induce the units of grams or kilograms. Thus, the unit of the mole does not 

explicitly show the amount of mass traditionally expressed in kilograms.  

While the mass of a substance is usually denoted by a lower-case 𝑚, e.g., 𝑚 = 4 𝑘𝑔, the amount 
of substance is denoted by 𝑛, e.g.,  𝑛 = 10 𝑚𝑜𝑙𝑒𝑠 that is abbreviated to 𝑛 = 10 𝑚𝑜𝑙. To further 
conceptualize the idea of the mole, the teacher added that while the majority of fundamental 
physical quantities could be measured using devices; e.g., temperature by a thermometer or 
electric current by the ammeter no device would measure directly the amount of substance (in 
moles). However, by applying algebraic operations, a substance expressed in kilograms can be 
converted to moles and vice versa. The ultimate question was how to convert the mass of a 
substance to a corresponding number of moles? Before immersing into mass - mole 
conversions, the teacher introduced a technique of converting a number of particles to moles to 
support conceptual understanding of the idea of 1 mole and to highlight the mechanism of 

formulating a proportion. These conversions were to have students realize that the unit of the 
mole can be used to link the micro- and macro-worlds and vice versa.   

Converting the number of atoms to the units of moles and vice versa 
The teacher posited the following question: Does the number of moles of a substance depend 

on the number of atoms? After a short discussion confirming the answer, he posted a problem. 

Example 1. Convert 12.04 × 1023 atoms of silver to moles. 

To convert the number of atoms to moles, the teacher labeled the variable of interest as n 

represented by 12.04 × 1023 𝑎𝑡𝑜𝑚𝑠 and demonstrated the process of formulating two parallel 

statements that will lead to making up a proportion; first containing fundamental constant 

called for the purpose of the study known statement; 1𝑚𝑜𝑙 = 6.02 × 1023 𝑎𝑡𝑜𝑚𝑠 and the other 

containing the variable of interest;                      

                                       Known statement:  1𝑚𝑜𝑙 = 6.02 × 1023 𝑎𝑡𝑜𝑚𝑠 

                   A statement with a variable:    𝑛 𝑚𝑜𝑙𝑒𝑠 = 12.04 × 1023 𝑎𝑡𝑜𝑚𝑠 

While the above setup of equations involved two algebraic operations to be solved as opposed 

to one if the statement with a variable were placed on the top and the known statement below, this 

arrangement was intentional to highlight the modeling process. The construction of all of the 

proportions during this lecture was consistently initiated from writing down the known statements. 

The instructor explained that the order of the statements does not affect the final answer and 

practically it will be up to the students what order they prefer. The instructor also pointed out 

the parallelism in formulating these statements; both contain moles on their left sides and 

atoms on their right sides. By embracing the statements in the algorithm of division, a 

proportion of two ratios was formulated;  

1 𝑚𝑜𝑙

𝑛 𝑚𝑜𝑙
=

6.02 × 1023 𝑎𝑡𝑜𝑚𝑠

12.04 × 1023 𝑎𝑡𝑜𝑚𝑠
 

By cross multiplying, canceling the units of atoms and solving the proportion for n, the students 

learned that  

𝑛 =
(1𝑚𝑜𝑙)(12.04 × 1023 𝑎𝑡𝑜𝑚𝑠)

6.02 × 1023 𝑎𝑡𝑜𝑚𝑠
= 2 𝑚𝑜𝑙 

Some students had figured out the answer prior solving the proportion, yet the purpose of 

writing the statements was to have them understand the mechanism of setting up the 

proportion. By initiating the proportion by using fundamental statements rather than ratios, the 

students were to realize the foundation of the structure of the proportion. To enhance further 

the mole concept as connecting the macro-world with the micro-world, the teacher posited a 

further question:  
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Can amount of a substance expressed in moles be converted back to a number of atoms?  

After a short discussion with the students, he wrote example 2 on the board. 

Example 2. How many atoms of monoatomic hydrogen are there in 4.2 moles of the 

substance? 

The teacher pointed out that the goal is to use a similar idea of proportion to solve the 

problem. Let 𝑥 represent the number of atoms in 4.2 moles. The teacher did not use 𝑛 to label 

the number of atoms to avoid confusion with 𝑛 denoting the number of moles. It is that almost 

all students who applied proportions on the posttest used 𝑥 to denote any variable of interest. 

Known statement:   1𝑚𝑜𝑙 = 6.02 × 1023 𝑎𝑡𝑜𝑚𝑠 

A statement with a variable: 4.2 𝑚𝑜𝑙𝑒𝑠 = 𝑥 𝑎𝑡𝑜𝑚𝑠 

These statements lead to the following proportion of two ratios: 

1 𝑚𝑜𝑙

4.2 𝑚𝑜𝑙
=

6.02 × 1023 𝑎𝑡𝑜𝑚𝑠

 𝑥 𝑎𝑡𝑜𝑚𝑠
 

That solved produced  𝑥 = 25.28 × 1025 atoms. 

After solving a couple of more examples of a similar type, the teacher invited the students to 

determine if the type of substance expressed in a number of atoms affected the corresponding 

amount expressed in moles. By observing patterns of formulating the proportions (that did not 

include the atomic mass of the atoms), students realized independence of the properties of the 

unit of the mole from the atomic mass of the substance. Students noted that mole-atoms 

conversions could be embraced in a dynamic proportion; 
1𝑚𝑜𝑙𝑒

𝑛
=

6.02×1023 𝑎𝑡𝑜𝑚𝑠

𝑥
 that lead to 

its more general version applied in the dimensional analysis; 𝑥 = (6.02 × 1023 𝑎𝑡𝑜𝑚𝑠

𝑚𝑜𝑙𝑒
) ∙ 𝑛, where 

𝑥 represented the number of atoms, and 𝑛 the number of moles.  A frequent use of  6.02 ×

1023 𝑎𝑡𝑜𝑚𝑠 prompted an introduction of the Avogadro’s number. After assuring that the 

students were comfortable with mole-atoms conversion, the instructor proceeded to phase 2 

that dealt with mass - moles conversion. 

Expressing mass of a substance in kilograms in terms of moles and vice versa 

This type of operation dominates in science, and it involves a reference to the periodic table of 

elements. Due to a low percentage of correct answers on the pretest (32%) and suggestions of 

the prior research, this path of conversion required a more detailed approach. To alert the 

students that if substance mass in kilograms is given, then the number of moles will depend on 

the atomic mass of the substance, the teacher posited a conceptual question:  

Does 2 kg of mercury 𝐻𝑔80 
200.59 , contain the same number of moles as 2 kg of potassium, 𝐾19

39.102 ?  Is it 

necessary to use Avogadro’s number during the process of converting these quantities?  

Recalling their prior knowledge, most of the students claimed that the number of moles would 

not be the same and suggested that Avogadro’s number be included in the proportion along 

with the mass of 1 atom of each of the substances. Once this was known, the number of atoms 

could be found by setting up a proportion like in phase 1. Overusing Avogadro’s number was 

reported by the prior research as students’ weaknesses. Thus, while this was a correct approach, 

the students, guided by the teacher, eventually realized that the Avogadro’s number would be 

used twice in two inverse algebraic operations; multiplication and division, thus it would 

produce a composite of inverse operations that yields an identity operation. The teacher 

redirected the students thinking toward interpreting the mass number as a mass, expressed in kg, 

of one mole of a substance. He reviewed the interpretations of numbers associated with atoms 

as described in the periodic table of elements, 𝑋𝑀
𝐴 , where A is called mass number, and M is 

called atomic number. Mass number, as given in the periodic table of elements, is expressed in 

terms of u the atomic mass unit that equals to 1.66 × 10−27 𝑘𝑔. In conversion problems, mass 

number can take a dual interpretation (see Figure 1); it can be interpreted as a mass of one mole of 

atoms of a substance (called also molar mass and expressed in grams), or a mass of one atom of the 

substance (called also atomic mass and expressed in kilograms when multiplied by the atomic 

mass unit u). Both interpretations are mutually dependent, and one can be converted into the 

other or used as indicated by a specific task. Understanding of the differences between these 

two different interpretations will be exemplified in the conversion problems that follow. 

 

 

 

 

 

Figure 1. Dual interpretation of the atomic mass number suggested in conversions 

The teacher informed the students that during this phase, they would use the mass number as 

representing the mass, in grams, of one mole. After that inclusion, the teacher referred to the 

problem stated and pointed out the positions of the elements in the periodic table while asking 

the students to predict the answer before applying the formal process. The phase of predicting 

was to have students further conceptualize the idea of 1mole which when coupled with the 

interpretation of notations used in the periodic table provided a bridge to traditional mass units. 

Students were ready now to construct proportions and convert both substances to moles. 

A - Atomic mass 

Mass of one atom 

Mass of one mole of atoms 
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Example 3. Prove that 2 kg of mercury, Hg80 
200.59 , contains a different number of moles than 2 

kg of potassium,  K19
39.102 ?   

Referring to an established earlier structure for building a proportion, the teacher labeled n as 
representing the number of moles in 2 kg of mercury. 

Known statement:   1mol = 200.59g 

A statement with a variable:   n mol = 2000g 

1 mol

n mol
=

200.59g

2000g
  

 Thus n = 9.97 mol. By labeling the variable and setting up a similar proportion for potassium, 

the students learned that for potassium, K,19
30.102  n = 66.44 mol. Students confirmed that their 

predictions were correct that potassium with a lower mass of 1 mole of the substance generated 

more moles. While the number of moles was independent of the type of substance when given 

by the number of atoms, the number of moles depended on the type of substance when the 

substance was given by its mass. 

Expressing mass of a substance in terms of the number of atoms and vice 
versa 

This type of operation was designed to find connections between phase 1 and phase 2 and 

practice using the mass number as one representing the mass of one atom.  

Example 4. How to set up a proportion to find the number of atoms in 4kg of copper?  

Following the structures of previous conversions, the students suggested to apply two steps; 

first to convert the mass to moles (as in phase 2) and then by using the property that 1mol =

6.02 × 1023 atoms (as in phase 1) find the number of atoms. This path of thinking showed that 

they understood the basic conversion techniques and the technique of setting up the 

proportions. After confirming the answer, the teacher intended to expand the type of 

conversions and suggested another way that used the mass number as a mass of one atom of 

the substance expressed in kilograms. Referring to the periodic table of elements, one learned 

that copper is described as Cu29
63.54 . How to construct a proportion that would use the known 

statement of the mass of one atom of copper? 

Let 𝑥 represent the mass of one atom of copper; 

Known statement:    1 AMU = 1.67 × 10−27 kg 

A statement with a variable: 63.54 AMU = 𝑥 kg 

Creating a proportion and solving it for the variable, 𝑥 = 1.06 × 10−25 kg that showed the mass 
of one atom of copper. This process did not provide the answer for the initial question yet, and 

another proportion was needed. Let 𝑥 represent the number of atoms in 4 kg of copper. 

Known statement:   1 atom = 1.06 × 10−25 kg 

A statement with a variable: 𝑥 atoms = 4 kg 

By solving the proportion, one learned that 𝑥 = 3.77× 1025 atoms, which represented the 
number of atoms contained in 4 kg of copper. While the process depicted all the details, most 

students simplified it by formulating the proportion  
1 

𝑥
=

1.06 ×10−25kg

4kg
   or just writing the final 

step 𝑥 =
4kg

1.06 ×10−25 kg
  which was also accepted.  

After solving these examples, the students were invited to solve textbook problems and design 

a theoretical experiment that would lead to formulating a regression line whose slope would 

represent the unit of the mole. The purpose of asking students to design an experiment was to 

have them link static and dynamic representations of proportions and get them more fluent in 

using both. During a next lecture (not discussed in this study), the teacher introduced a formal 

definition of 1 mole, made further connections to Avogadro’s number and carbon-12 and used 

the conversion techniques to solve problems regarding ideal gas law; pV = nRT and pV = NkBT, 

where p represented pressure inside the gas expressed in pascals, V volume of the gas expressed 

in meters cubed, n number of moles, R = 8.31
J

mol
∙ K  gas constant, T gas temperature 

expressed in Kelvin scale, N number of atoms, and kB = 1.381 × 10−23J/K Boltzmann’s 

constant. While working on converting, students were given options of using any methods of 

their choice. 

Data Analysis 

Analysis of the pretest results 

Three questions, designed by the author and consulted with science professionals were used to 

assess the students’ current understanding of the unit of substance; Item #1 that was a 

True/False type, Item #2 that required the students to convert given mass to number of moles, 

and Item #3 that assessed students’ correct understanding of the definitions of 1 mole, molar 

mass, and atomic mass. Table 2 shows descriptive analysis of Item #1. 

The percent of correct answers on Item #1, part #a was relatively high (88%) which showed 

that the students understand the unit as the quantity measuring substance. The percent of 

correct answers on the remaining parts of this question varied. A rather low percentage of the 

correct answers (32%) was reported on the interpretation of the molar mass (#1c).  This 

deficiency was addressed while formulating the theoretical framework.  

Table 2. Students’ pretest responses (Item #1, True/False) 
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Multiple Choices Answer/Percent correct 
a) The mass of two moles of oxygen is the same as the mass of two moles 

of nitrogen 
False, 88% (N=22) 

b) Two moles of iron contain the same number of atoms as two moles of 
zinc. 

c) Molar mass can be expressed in kilograms or grams. 
d) Both atomic mass and molar mass can be used to find the mass of a 

certain number of particles. 

True, 56 % (N=14) 
True, 32 % (N=8) 
True, 72 % (N=18) 

 

Item #2 asked the students to convert 2 kg of sodium Na11 
22.99  to moles and it was correctly 

solved by 20% (N=5) of the students. About 24% (N=6) of the students did not attempt to 

solve it, 15% (N=4) got lost in setting up the conversion process (dimensional analysis). The 

remaining 39% (N=10) inserted the Avogadro’s number in the dimensional analysis and could 

not carry out the units’ cancellation. None of these students attempted to apply proportional 

reasoning to solve the problem. 

Item #3 asked students to define the unit of the mole, molar mass, and atomic mass. These 

students showed that they understood the conceptual definition of the mole; the majority of 

them (80%, N=20) stated that mole represents the amount of particles/atoms/entities a 

substance has or an object is made of. The remaining 20% (N=5), used more general 

descriptions. Verbatim, for example: “It is used to describe matter and can be converted to 

other things," "a unit of measure to express mass, volume, and particles," "a basic unit used for 

mass."  However, the students did not equally succeed on conceptualizing the phrases; molar 

mass and atomic mass on which the percentages of correct answers were respectively (25%, 

N=6) and (30%, N=8). The pretest questions were not returned to students, nor they were 

discussed until the study was completed. 

Summary of the pre-test and post-test results 

The students took the posttest after about six weeks from the date they took the pretest. The 

format of the posttest questions was like the one given on pretest. A summary of pre-test/post-

test responses to Question 1 are included in Table 3. The posttest results showed an 

improvement in all areas tested and especially in interpreting molar mass (#1c) that might be 

accounted for highlighting established verbal definition as the mass of one mole. This result 

suggests that the commonly used combination of the words molar and mass does not clearly 

describe the physical unit of the quantity. In a similar rate (80%, N=20) the students succeeded 

in converting 2 kg of sodium, Na,11 
22.99  to moles. The results on both questions supported the 

hypothesis that using the structure of proportion and embracing the process in a consistent and 

systematic procedures, helped students understand the interpretation of the unit of the mole 

and learn the conversion techniques. Percentages of students who correctly interpreted molar 

mass (86%, N=22) and atomic mass (90%, 23) was also higher on the posttest. 

Table 3. Students’ pretests and posttest responses to Question #1. 

Question: Classify as True/False Pretest                           Posttest 
a) The mass of two moles of oxygen is the same as the mass of 

two moles of nitrogen 
False, 88% (N=22)        90% (N=23) 

b) Two moles of iron contain the same number of atoms as two 
moles of zinc. 

c) Molar mass can be expressed in kilograms or grams. 
d) Both atomic mass and molar mass can be used to find the 

mass of a certain number of particles. 

True, 56% (N=14%)     85 % (N=21) 
 
True, 32% (N=8)          78 % (N=20) 
True, 72% (N=18%)     96 % (N=24) 

More details emerged from a further descriptive analysis of the students’ responses. While 

initially, I have assumed that knowing the percent of correct/incorrect answers would justify 

the intervention well, I decided to zoom more in-depth into how students solved the problem 

and what the errors were. Out of the 20 students who correctly converted 2 kg of sodium to 

the number to moles, (20%, N=4) applied dimensional analysis and 80% (N=16) constructed 

proportions. This results support the purpose of the study and the undertaken theoretical 

framework. It is to note that the students were free to use any method of their choice to 

conduct the conversions. After comparing with pretest results, the researchers noted that two 

of these students who used the dimensional analysis during the pre-test used proportions on the 

post-test. Zooming even farther it was also curious to learn what caused the remaining five 

students not succeed on the conversion problem. Two of the students did not attempt to solve 

it, two included Avogadro’s number in the dimensional analysis and got lost during the 

conversion process, and one student incorrectly converted kilograms to grams which resulted in 

incorrect mole computations. A strong association of the unit of the mole to Avogadro’s 

number still prevailed in these students’ minds despite not highlighting this constant during the 

instructional unit. Misuse of the Avogadro’s number was also mentioned by other researchers 

(e.g. Furio et al., 2002). The percentages of students who correctly interpreted the unit of the 

mole (N=24, 96%), molar mass (86%, N=22) and atomic mass (90%, 23) was also higher on 

the posttest. It is believed that bringing forth students’ algebraic reasoning in a manner 

consistent with what they study in mathematics can be helpful in quantifying chemistry 

concepts. While the same size of the group under investigation was small, it is believed that the 

encouraging results can be still used by curriculum policy makers and other stakeholders to 

design science teaching materials that students will understand and enjoy studying. 

Summary  

The purpose of this study was to find out if using proportions and fundamental units can help 

students understand the conversions and the virtue of the idea of substance amount expressed 

in the units of moles. While the focus of the study was to develop conversion techniques, 

understanding the idea of molar mass and atomic mass was also exploited. I hypothesize that 

augmenting the conceptual definitions of molar and atomic mass helped students understand 
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the meaning of the units and set up algorithms for conversions. This study also supports prior 

recommendations (see Niaz, 1987; Tullberg et al., 1994, Soon’s et al. 2011), Scott’s, 2012) that a 

consistent integration of algebraic operations and scientific terminology during conversions 

helps students learn these processes. While the prior research suggested such integration, this 

study attempted to provide concrete approaches that proved to be promising. It might be 

misleading to assume that students will figure out by themselves how to integrate the rules of 

algebra in the quantification processes. The integration phases must be developed carefully and 

delivered with attention to all nuances; algebraic and scientific (Sokolowski, 2018).  

In sum, it can be suggested that providing students with methods whose algebraic structures are 
familiar to them can serve as a way of improving not only the mole understanding but also 
other computations, not necessarily related to conversions. I realized that perhaps there could 
be more pre-test/post-test items assessing the intervention from a wider angle. However, it is 
believed that the quantitative/qualitative nature of the items provided enough evidence to 
access the intervention. I hope that this study will initiate further research, perhaps with 
chemistry students to assess students’ progress on other areas requiring proportions and these 
conversion phases that did not surface in this study. Furthermore, unifying the methods of 
teaching the mole across chemistry and physics, would deepen not only understanding of the 
mole but also improve students’ general STEM disposition. 
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