Development of school laboratory participation over a period of six months: A case study of aspects of divergent thinking and problem discovery

Keywords: development, divergent thinking, extracurricular activities, free-choice learning, school laboratory, science education

Abstract

Creativity, especially problem discovery and divergent thinking are skills that will be demanded for more and more jobs in the future. STEM subjects are leading the way. Schools are an important learning place to train the future generation of workers. However, promotion of creativity in STEM subjects is not sufficiently implemented. Chemistry teachers prefer frontal teaching instead of free, pupil-centred methods that encourage creative work. Extracurricular learning activities offer potential due to the free work atmosphere of a self-discovered problem. Pupils then have to solve it. In the context of this study, the development of problem discovery and divergent thinking of gender, parental academic background and gender differences based on parental academic background will be presented in this study. It is based on two school laboratories: Agnes-Pockels-Lab (without accompanying and professional support) and the DroPS project (with accompanying and professional support).

References

Abernathy, T. V., & Vineyard, R. N. (2001). Academic Competitions in Science: What are the Rewards for Students? The Clearing House, 74(5), 269-276.

Actionbound. (2020). Schnitzeljagd-App. Smartphone-Rallye selber machen. [Scavenger Hunt App. Do your own Smartphone Rally]. de.actionbound.com

Andersson, A. L. (1984). Toward a Dialectical Conception of the Percept-Genetic Approach to Perception Personality. Psychological processes in cognition and personality, 125-134.

Baker, D., & Leary, R. (1995). Letting Girls Speak out about Science. Journal of research in science teaching, 32(1), 3-27.

Barbot, B., Lubart, T. I., & Besançon, M. (2016). ‘Peaks, Slumps, and Bumps’: Individual Differences in the Development of Creativity in Children and Adolescents. In B. Barbot (Ed.), New directions for child and adolescent development. Perspectives on creativity developtment, 151, 33-45.

Beghetto, R. (2019). Creativity in Classrooms. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (Second Edition ed., pp. 587-606): Cambridge Cambridge University Press.

BMBF (2019). Bildung auf einen Blick 2019 - OECD Indikatoren. [Education at a glance 2019 – OECD indicators]. https://www.bmbf.de/files/6001821mw.pdf

Cachia, R., & Ferrari, A. (2010). Creativity in schools: A survey of teachers in Europe. Joint Research Centre (Seville site).

Charles, R. E., & Runco, M. A. (2001). Developmental trends in the evaluative and divergent thinking of children. Creativity Research Journal, 13(3-4), 417-437.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.

Commission, E. U. (2015). Science education for responsible citizenship. Luxembourg: EU-Commission.

Council of Europe. (2003). Non-formal education. https://rm.coe.int/2012-compendium-non-formal-education/168077c10b

Cropley, A. J. (1978). Unterricht ohne Schablone. Wege zur Kreativität. [Lessons Without a Template. Ways to Creativity]. Ravensburg: Otto Maier Verlag.

Damian, R. I., & Simonton, D. K. (2015). Psychopathology, adversity, and creativity: Diversifying experiences in the development of eminent African Americans. Journal of Personality and Social Psychology, 108(4), 623.

Daniels, S. (2013). Facilitating creativity in the classroom: Professional development for K12 teachers. In M. B. Gregerson, J. Kaufman & H. Snyder (Eds.), Teaching creatively and teaching creativity (pp. 3-14). New York: Springer.

Datta, L. E., & Parloff, M. B. (1967). On the relevance of autonomy: Parent-child relationships and early scientific creativity. Proceedings of the 75th Annual Convention of the American Psychological Association, 2, 149-150.

Descalço, L., & Oliveira, P. (2018). Science Competitions: Do they foster learning? In EDULEARN18 Proceedings

(pp. 1388-1394). Palma, Spain: Academic Press.

Diakidoy, I.-A. N., & Constantinou, C. P. (2001). Creativity in Physics: Response Fluency and Task Specificity. Creativity Research Journal, 13(3-4), 401-410.

DLR (2019). DLR_school_lab Bremen. https://www.dlr.de/schoollab/desktopdefault.aspx/tabid-7605

Gajda, A., Jankowska, D., & Karwowski, M. (2015). How to Develop Children’s Creativity and Intercultural Sensitivity: Around Creativity Compass Program. In A.-G. Tan & C. Perleth (Eds.), Creativity, Culture, and Development (pp. 133-145). Singapore: Springer.

Gedo, J. E., & Goldberg, A. (1976). Models of the mind: A psychoanalytic theory: University of Chicago Press.

Gneezy, U., Niederle, M., & Rustichini, A. (2003). Performance in Competitive Environments: Gender Differences. The quarterly journal of economics, 118(3), 1049-1074.

Gray, A. (2016). The 10 skills you need to thrive in Fourth Industrial Revolution. https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/

Guilford, J. P. (1959). Three Faces of Intellect. American psychologist, 14(8), 469-479.

Gärtner, H. J. (1997). Kreativität im Chemieunterricht. [Creativity in Chemistry Lesson]. Naturwissenschaften im Unterricht, 8(12-20).

Gómez, M., Toma, R. B., Ortiz-Revilla, J., & Merino, M. (2019). Creativity development through problem-based informal science. Paper presented at GIREP-ICPE-EPEC-MPTL CONFERENCE, Budapest, Hungary.

Hemdan, A. H., & Kazem, A. M. (2019). Creativity Development of High-Achieving Students. Creativity Research Journal, 31(3), 296-308.

Howells, K. (2018). The future of education and skills: education 2030: the future we want. https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf

Hu, W., & Adey, P. (2002). A Scientific Creativity Test for Secondary School Students. International Journal of Science Education, 24(4), 389-403. doi: 10.1080/09500690110098912

Janštová, V., Dvořáková, R., & Jáč, M. (2016). Identifying the factors that motivate pupils toward science competitions. Paper presented at the ESERA 2015 Conference. Science education research: Engaging learners for a suitable future, Helsinki, Finland.

Jo, S. M. (2009). A Study of Korean Students' Creativity in Science Using Structural Equation Modeling (Doctoral dissertation). https://repository.arizona.edu/handle/10150/193568

Kaufman, J. C., & Beghetto, R. A. (2009). Beyond Big and Little: The Four C Model of Creativity. Review of general psychology, 13(1), 1-12.

Kind, P. M., & Kind, V. (2007). Creativity in Science Education: Perspectives and Challenges for Developing School Science. Studies in Science Education, 43, 1-37. doi: 10.1080/03057260708560225

Kohlberg, L. (1987). The development of moral judgment and moral action. In L. Kohlberg (Ed.) Child psychology and childhood education: A cognitive-developmental view, pp. 259 - 328. New York: Longman.

Lengfelder, A., & Heller, K. A. (2002). German Olympiad Studies: Findings from a Retrospective Evaluation and from In-Depth Interviews: Where Have All the Gifted Females Gone. Journal of Research in Education, 12(1), 86-92.

Lopez, E. C., Esquivel, G. B., & Houtz, J. C. (1993). The Creative Skills of Culturally and Linguistically Diverse Gifted Students. Creativity Research Journal, 6(4), 401-412. doi: 10.1080/10400419309534495

Miller, B. C., & Gerard, D. (1979). Family Influences on the Development of Creativity in Children: An Integrative Review. Family Coordinator, 295-312.

Mohtar, L. E., Halim, L., & Iksan, Z. H. (2016). Cognitive, Affective and Students' Achievemen in Physics: A Hypothetical Model for Structural Equation Modeling testing. Paper presented at the 4th International Conference on ASEAN Comparative Education Research Network (ACERN), Padang - West Sumatra.

Mund, W. (2007). Jugend forscht und Jugend musiziert: kognitive Fähigkeiten und Persönlichkeitsmerkmale erfolgreicher Teilnehmer. [‘Jugend forscht’ and ‘Jugend musiziert’: Cognitive Abilities and Personality Traits of Successful Participants.] (Doctoral dissertation). http://archiv.ub.uni-marburg.de/diss/z2008/0750/pdf/dwm.pdf

Niedersächisches Kultusministerium (Hrsg.). (2017). Kerncurriculum für das Gymnasium - gymnasiale Oberstufe. Chemie. https://db2.nibis.de/1db/cuvo/datei/ch_go_kc_druck_2017.pdf

Niedersächsisches Kultusministerium (Hrsg.). (2012). Kerncurriculum für die integrierte Gesamtschule. Schuljahrgänge 5-10. Naturwissenschaften. https://db2.nibis.de/1db/cuvo/datei/kc_2012_igs_nws_i.pdf

Niedersächsisches Kultusministerium (Hrsg.). (2015). Kerncurriculum für das Gymnasium. Schuljahrgänge 5-10. Naturwissenschaften. https://db2.nibis.de/1db/cuvo/datei/nw_gym_si_kc_druck.pdf

Omusonga, T. O., Indoshi, F. C., & Achieng'Rabari, J. (2011). Differences in Divergent Thinking among Secondary School Physics Students. Journal of Emerging Trends in Educational Research and Policy Studies, 2(4), 216-227.

Piske, F. , Stoltz, T. , Camargo, D. , Vestena, C. , Machado, J. , de Freitas, S. , Dias, C. & Taucei, J. (2017). Creation Process during Learning of Gifted Students: Contributions from Jean Piaget. Creative Education, 8(4), 505-513. doi: https://doi.org/10.4236/ce.2017.84039.

Rosenblatt, E., & Winner, E. (1988). The Art of Children's Drawing. Journal of Aesthetic Education, 22(1), 3-15. doi: 10.2307/3332960

Runco, M. A. (1986). Divergent Thinking and Creative Performance in Gifted and Nongifted Children. Educational and Psychological Measurement, 46(2), 375-384. doi: 10.1177/001316448604600211

Runco, M. A. (2014). Developmental Trends and Influences on Creativity. In: Runco, M. A. (Ed.), Creativity (Second edition, pp. 39 – 67): Academic Press. doi: 10.1016/B978-0-12-410512-6.00002-3

Runco, M. A., & Albert, R. S. (1985). The Reliability and Validity of Ideational Originality in the Divergent Thinking of Academically Gifted and Nongifted Children. Educational and Psychological Measurement, 45(3), 483-501.

Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity research journal, 24(1), 92-96.

Runco, M. A., & Okuda, S. M. (1988). Problem Discovery, Divergent Thinking, and the Creative Process. Journal of youth and adolescence, 17(3), 211-220. doi: 10.1007/BF01538162

Sahin, A. (2013). STEM Clubs and Science Fair Competitions: Effects on Post-Secondary Matriculation. Journal of STEM Education, 14(1), 5-11.

Sayed, E. M., & Mohamed, A. H. H. (2013). Gender Differences in Divergent Thinking: Use of the Test of Creative Thinking-Drawing Production on an Egyptian Sample. Creativity Research Journal, 25(2), 222-227. doi: 10.1080/10400419.2013.783760

Schwarz, J. (2020a). Mann-Whitney-U-Test. Methodenberatung Universität Zürich.

Schwarz, J. (2020b). Wilcoxon-Test. Methodenberatung der Universität Zürich.

Semmler, L., & Pietzner, V. (2017). Creativity in Chemistry Class and in General–German Student Teachers’ Views. Chemistry Education Research and Practice, 18(2), 310-328.

Smith, G., & Carlsson, I. (1985). Creativity in Middle and Late School Years. International Journal of Behavioral Development, 8(3), 329-343.

Smolucha, L. W., & Smolucha, F. C. (1985). A Fifth Piagetian Stage: The Collaboration Between Analogical and Logical Thinking in Artistic Creativity. Visual Arts Research, 90-99.

Starko, A. J. (2018). Creativity in the classroom: schools of curious delight. (6th Ed.). New York: Routledge, Taylor & Francis.

Sternberg, R. J. (2018). What's Wrong with Creativity Testing? The Journal of Creative Behavior. doi: 10.1002/jocb.237

Torrance, E. P. (1966). Torrance tests of creative thinking: Norms-technical manual: Verbal tests, forms a and b: Figural tests, forms a and b. New York: Personal Press.

Torrance, E. P. (1968). A Longitudinal Examination of the Fourth Grade Slump in Creativity. Gifted Child Quarterly, 12(4), 195-199.

TU Braunschweig. (2020). Agnes-Pockels-Labor: Angebote. https://www.tu-braunschweig.de/agnes-pockels-labor

Urban, K. K. (1991). On the Creativity Development in Children. Creativity Research Journal, 4, 177-191.

Urban, K. K. (2004). Kreativität: Herausforderung für Schule, Wissenschaft und Gesellschaft. [Creativity. Challange for school, science and society.]. Münster: LIT Verlag.

Urban, K. K., & Jellen, H. G. (1993). Test zum Schöpferischen Denken-Zeichnerisch (TSD-Z). Hannover: Universität Hannover, Arbeitsstelle HEFE.

Urban, K. K. (2011). Möglichkeiten und Grenzen von Kreativitätsdiagnostik. Ein programmatischer

Beitrag. [Possibilities and limits of creativity diagnostics. A programmatic contribution.]. In Karg-Stiftung (Ed.), (Vol. 2, p. 18-27). Frankfurt.

Wakefield, J. F. (1985). Towards creativity: Problem finding in a Divergent-Thinking Exercise. Child Study Journal.

Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children. New York: Holt, Rinehart, & Winston.

Webb, N. M. (1984). Sex Differences in Interaction and Achievement in Cooperative Small Groups. Journal of educational psychology, 76(1), 33.

Westby, E. L., & Dawson, V. L. (1995). Creativity: Asset or Burden in the Classroom? Creativity Research Journal, 8(1), 1-10.

Wirt, J. L. (2011). An Analysis of Science Olympiad Participants' Perceptions Regarding their Experience with the Science and Engineering Academic Competition. (Doctoral dissertation). https://scholarship.shu.edu/cgi/viewcontent.cgi?article=1014&context=dissertations

Wu, W.-T., & Chen, J. D. (1999). A Follow-Up Study of Taiwan Physics and Chemistry Olympians—the Environmental Influences. https://www.childresearch.net/projects/special/1999_01.html

ZARM. (2018). DroPS - Schülerexperimente unter Schwerelosigkeit. [DroPS - Students Experiments under Weightless.]. https://www.zarm.uni-bremen.de/de/nachwuchs/drops-das-experiment-im-fallturm.html

Published
2021-02-26
How to Cite
Müller, S., & Pietzner, V. (2021). Development of school laboratory participation over a period of six months: A case study of aspects of divergent thinking and problem discovery. International Journal of Physics & Chemistry Education, 13(1), 1-11. https://doi.org/10.51724/ijpce.v13i1.133