Scaffolding the structure of organic chemistry students’ multivariate comparative mechanistic reasoning


Abstract views: 1445 / PDF downloads: 764

Authors

DOI:

https://doi.org/10.51724/ijpce.v11i2.39

Keywords:

Mechanistic reasoning, multivariate reasoning, philosophy of organic chemistry, reasoning structure, scaffold

Abstract

Problem solving in all sciences requires the integration of multiple causal variables. Organic chemistry students often limit their reasoning about multivariate mechanism problems to single variables. To our knowledge, no teaching instrument that uses the structure of mechanistic reasoning to explicitly foster the consideration of multiple variables has been empirically evaluated to date. To fill this gap, we developed a scaffold based on findings in philosophy of organic chemistry and tested it in a qualitative interview setting. The scaffold provides a stepwise reasoning structure to compare the activation energy required for two different molecules to undergo the same type of mechanistic step. We found that the scaffold builds on what students already do when engaging in comparative mechanistic reasoning by themselves and supports their multivariate reasoning. The applicability of the structure of the scaffold in other contexts of mechanistic reasoning including physics is discussed.

Downloads

Download data is not yet available.

References

Alfieri, L., Nokes-Malach, T. J., & Schunn, C. D. (2013). Learning Through Case Comparisons: A Meta-Analytic Review. Educational Psychologist, 48(2), 87-113. doi:10.1080/00461520.2013.775712

Becker, N., Noyes, K., & Cooper, M. (2016). Characterizing Students’ Mechanistic Reasoning about London Dispersion Forces. Journal of Chemical Education, 93(10), 1713-1724. doi:10.1021/acs.jchemed.6b00298

Berland, L. K., & Reiser, B. J. (2009). Making Sense of Argumentation and Explanation. Science Education, 93(1), 26-55. doi:10.1002/sce.20286

Bernholt, S., & Parchmann, I. (2011). Assessing the complexity of students' knowledge in chemistry. Chemistry Education Research and Practice, 12(2), 167-173. doi:10.1039/c1rp90021h

Bhattacharyya, G. (2006). Practitioner development in organic chemistry: how graduate students conceptualize organic acids. Chemistry Education Research and Practice, 7(4), 240-247. doi:10.1039/B5RP90024G

Bhattacharyya, G. (2014). Trials and tribulations: student approaches and difficulties with proposing mechanisms using the electron-pushing formalism. Chemistry Education Research and Practice, 15(4), 594-609. doi:10.1039/c3rp00127j

Bhattacharyya, G., & Bodner, G. M. (2005). "It Gets Me to the Product": How Students Propose Organic Mechanisms. Journal of Chemical Education, 82(9), 1402-1407. doi:10.1021/ed082p1402

Broman, K., Bernholt, S., & Parchmann, I. (2015). Analysing task design and students’ responses to context-based problems through different analytical frameworks. Research in Science & Technological Education, 33(2), 143-161. doi:10.1080/02635143.2014.989495

Broman, K., Bernholt, S., & Parchmann, I. (2018). Using model-based scaffolds to support students solving context-based chemistry problems. International Journal of Science Education, 40(10), 1176-1197. doi:10.1080/09500693.2018.1470350

Caspari, I., Kranz, D., & Graulich, N. (2018). Resolving the complexity of organic chemistry students' reasoning through the lens of a mechanistic framework. Chemistry Education Research and Practice, 19(4), 1117-1141. doi:10.1039/c8rp00131f

Cooper, M. M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating Students’ Reasoning about Acid–Base Reactions. Journal of Chemical Education, 93(10), 1703-1712. doi:10.1021/acs.jchemed.6b00417

Corbin, J., & Strauss, A. (2015). Basics of Qualatative Research: Techniques and Procedures for Developing Grounded Theory (4th ed.). Los Angeles: Sage.

Cruz-Ramírez de Arellano, D., & Towns, M. H. (2014). Students' understanding of alkyl halide reactions in undergraduate organic chemistry. Chemistry Education Research and Practice, 15(4), 501-515. doi:10.1039/c3rp00089c

Fach, M., de Boer, T., & Parchmann, I. (2007). Results of an interview study as basis for the development of stepped supporting tools for stoichiometric problems. Chemistry Education Research and Practice, 8(1), 13-31. doi:10.1039/B6RP90017H

Ferguson, R., & Bodner, G. M. (2008). Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chemistry Education Research and Practice, 9(2), 102-113. doi: 10.1039/B806225K

Furió, C., Calatayud, M. L., Bárcenas, S. L., & Padilla, O. M. (2000). Functional Fixedness and Functional Reduction as Common Sense Reasonings in Chemical Equilibrium and in Geometry and Polarity of Molecules. Science Education, 84(5), 545-565. doi:10.1002/1098-237X(200009)84:5<545::AID-SCE1>3.0.CO;2-1

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic Decision Making. Annual Review of Psychology, 62, 451-482. doi:10.1146/annurev-psych-120709-145346

Goodwin, W. M. (2003). Explanation in Organic Chemistry. Annals of the New York Academy of Sciences, 988(1), 141-153. doi:10.1111/j.1749-6632.2003.tb06093.x

Goodwin, W. M. (2008). Structural formulas and explanation in organic chemistry. Foundations of Chemistry, 10(2), 117-127. doi:10.1007/s10698-007-9033-2

Graulich, N., & Schween, M. (2018). Concept-Oriented Task Design: Making Purposeful Case Comparisons in Organic Chemistry. Journal of Chemical Education, 95(3), 376−383. doi:10.1021/acs.jchemed.7b00672

Grove, N. P., Cooper, M. M., & Rush, K. M. (2012). Decorating with Arrows: Toward the Development of Representational Competence in Organic Chemistry. Journal of Chemical Education, 89(7), 844-849. doi:10.1021/ed2003934

Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-119). Greenwich: Information Age Publishing.

Kraft, A., Strickland, A. M., & Bhattacharyya, G. (2010). Reasonable reasoning: multi-variate problem-solving in organic chemistry. Chemistry Education Research and Practice, 11(4), 281-292. doi:10.1039/c0rp90003f

Kuhn, D. (2007). Reasoning About Multiple Variables: Control of Variables Is Not the Only Challenge. Science Education, 91(5), 710-726. doi:10.1002/sce.20214

Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23(4), 435-451. doi:10.1016/j.cogdev.2008.09.006

Kuhn, D., Ramsey, S., & Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92-110. doi:10.1016/j.cogdev.2014.11.003

Maeyer, J., & Talanquer, V. (2013). Making Predictions About Chemical Reactivity: Assumptions and Heuristics. Journal of Research in Science Teaching, 50(6), 748-767. doi:10.1002/tea.21092

Moon, A., Stanford, C., Cole, R., & Towns, M. (2016). The nature of students' chemical reasoning employed in scientific argumentation in physical chemistry. Chemistry Education Research and Practice, 17(2), 353-364. doi:10.1039/c5rp00207a

Moreira, P., Marzabal, A., & Talanquer, V. (2018). Using a mechanistic framework to characterise chemistry students' reasoning in written explanations. Chemistry Education Research and Practice, 20(1), 120-131. doi:10.1039/C8RP00159F

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive Load Theory and Instructional Design: Recent Developments. Educational Psychologist, 38(1), 1-4. doi:10.1207/s15326985ep3801_1

Popova, M., & Bretz, S. L. (2018). Organic Chemistry Students’ Understandings of What Makes a Good Leaving Group. Journal of Chemical Education, 95(7), 1094–1101. doi:10.1021/acs.jchemed.8b00198

Rozier, S., & Viennot, L. (1991). Students’ reasonings in thermodynamics. International Journal of Science Education, 13(2), 159-170. doi:10.1080/0950069910130203

Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed From Philosophy of Science. Science Education, 92(3), 499-525. doi:10.1002/sce.20264

Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: a learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10-23. doi:10.1039/C3RP00111C

Strickland, A. M., Kraft, A., & Bhattacharyya, G. (2010). What happens when representations fail to represent? Graduate students’ mental models of organic chemistry diagrams. Chemistry Education Research and Practice, 11(4), 293-301. doi:10.1039/c0rp90009e

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructunal design. Learning and Instruction, 4(4), 295-312. doi:10.1016/0959-4752(94)90003-5

Talanquer, V. (2018). Chemical rationales: another triplet for chemical thinking. International Journal of Science Education, 40(15), 1874-1890. doi:10.1080/09500693.2018.1513671

Todd, P. M., & Gigerenzer, G. (2000). Précis of Simple heuristics that make us smart. Behavioral and Brain Sciences, 23(5), 727-741. doi:10.1017/S0140525X00003447

Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

van Merrienboer, J. J. G., Kirschner, P. A., & Kester, L. (2003). Taking the Load Off a Learner's Mind: Instructional Design for Complex Learning. Educational Psychologist, 38(1), 5-13. doi:10.1207/s15326985ep3801_2

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.

Weinrich, M. L., & Sevian, H. (2017). Capturing students’ abstraction while solving organic reaction mechanism problems across a semester. Chemistry Education Research and Practice, 18(1), 169-190. doi:10.1039/c6rp00120c

Weinrich, M. L., & Talanquer, V. (2016). Mapping students' modes of reasoning when thinking about chemical reactions used to make a desired product. Chemistry Education Research and Practice, 17(2), 394-406. doi:10.1039/c5rp00208g

Downloads

Published

11/26/2019

How to Cite

Caspari , I., & Graulich, N. (2019). Scaffolding the structure of organic chemistry students’ multivariate comparative mechanistic reasoning. International Journal of Physics and Chemistry Education, 11(2), 31–43. https://doi.org/10.51724/ijpce.v11i2.39