An undergrad experiment for the at-home study of fluorescence: Extraction of quinine and chlorophyll from Cinchona tree bark
Abstract views: 394 / PDF downloads: 136
DOI:
https://doi.org/10.51724/ijpce.v15i1.146Keywords:
chlorophyll, fluorescence, liquid-liquid and solid-liquid extraction, quinine, refluxAbstract
Herein we describe a method for the effective extraction and qualitative detection of quinine and chlorophyll. Both compounds can be successfully extracted from Cinchona tree bark (Cinchona pubescens Vahl) using nothing but household materials, usually cheap and easily acquired items available in any hardware store. During solid-liquid extraction with reflux, using an organic solvent is used to retain both compounds. Afterward, the compounds are partitioned between water and paint solvent. The organic phase containing the chlorophyll is saved, and the aqueous layer is acidified. Finally, an ultraviolet (UV) light is used to provoke fluorescence in both compounds.
Downloads
References
Acuña, A. U. (2007). More thoughts on the Narra Tree Fluorescence. Journal of Chemical Education, 84(2), 231. https://doi.org/10.1021/ed084p231
Al-Soufi, W., Carranza-García, J., & Novo, M. (2020). When the kitchen turns into a physical chemistry lab. Journal of Chemical Education, 97(9), 3090-3096. https://doi.org/10.1021/acs.jchemed.0c00745
Atici, Ö., Atici, T. (2012). Investigating in biology syllabus topics at photosynthesis experiments of the effect student achievement and their diversification. The Journal of Turkish Educational Sciences, 10(1), 143-166.
Aymard, G. A. (2019). A brief outline on current taxonomical and nomenclatural aspects of the genus Cinchona (Rubiaceae-Cinchoneae). Revista Académica Colombiana de Ciencias Exactas Físicas y Naturales, 43(supl), 234-241. https://doi.org/10.18257/raccefyn.1079
Bauer, R. K., Szalay, L., & Tombacz, E. (1972). Migration of electronic energy from chlorophyll b to chlorophyll a in solutions. Biophysical Journal, 12(7), 731-745. https://doi.org/10.1016/S0006-3495(72)86117-4
Boratyński, P. J., Zielińska-Błajet, M., & Skarżewski, J. (2019). Cinchona Alkaloids – Derivatives and Applications. In H-J. Knöller (Ed.), The Alkaloids Chemistry and Biology. Amsterdam: Elsevier.
Buchberger, A. R., Evans, T., & Doolittle, P. (2020). Analytical Chemistry Online? Lessons learned from Transitioning a project lab online due to COVID-19. Journal of Chemical Education, 97(9), 2976–2980. https://doi.org/10.1021/acs.jchemed.0c00799
Canales, N. A., Gress Hansen, T. N., Cornett, C., Wlaker, K., Driver, F., Antonelli, A., Maldonado, C., Nesbitt, M., Barnes, C. J., & Rønsted, N. (2020). Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography. Journal of Ethnopharmacology, 249, 112375. https://doi.org/10.1016/j.jep.2019.112375
Celius, T. C., Peterson, R.C., Anderson-Wile, A. M., & Kraweic-Thayer, M. (2018). From observation to prediction to application: A guided exercise for liquid-liquid extraction. Journal of Chemical Education, 95(9), 1626-1630. https://doi.org/10.1021/acs.jchemed.7b00779
Ciaccio, J. A., & Hassan, K. (2020). Modified method for extraction of photosynthetic plant pigments for microcolumn chromatography. Journal of Chemical Education, 97(8), 2362-2365. https://doi.org/10.1021/acs.jchemed.0c00503
Clarke, R. J., & Oprysa, A. (2004). Fluorescence and light scattering. Journal of Chemical Education, 81(5), 705-707. https://doi.org/10.1021/ed081p705
D’Alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ilboudo, D. P., Ferrante, P., & Delbue, S. (2020). The use of antimalarial drugs against viral infection. Microorganisms, 8(1), 85. https://doi.org/10.3390/microorganisms8010085
Darken, M. A. (1961). Natural and induced fluorescence in microscopic organisms. Applied Microbiology, 9(4), 354-360. https://doi.org/10.1128/am.9.4.354-360.1961
Fortman, J. J. & Stubbs, K. M. (1992). Demonstrations with Red Cabbage Indicator. Journal of Chemical Education, 69(1), 66. https://doi.org/10.1021/ed069p66.1
Gachelin, G., Garner, P., Ferroni, E., & Tröhler, U., Chalmers, I. (2017). Evaluating Cinchona bark and quinine for treating and preventing malaria. Journal of the Royal Society of Medicine, 110(1), 31-40. https://doi.org/10.1177/0141076816681421
Gisselmann, G., Alisch, D., Welbers-Joop, B., Hatt, H. (2018). Effects of Quinine, Quinidine and Chloroquine on Human Muscle Nicotinic Acetylcholine Receptors. Frontiers in Pharmacology, 9, 1339. https://doi.org/10.3389/fphar.2018.01339
Gong, X., Li, Y., & Qu, H. (2014). Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: A case study of Danshen injection. Molecules, 19, 18705-18720. https://doi.org/10.3390/molecules191118705
Große, M., Ruetalo, N., Businger, R., Rheber, S., Setz, C., Rauch, P., Auth, J., Brysch, E., Schindler, M., & Schubert, U. (2020). Evidence that quinine exhibits antiviral activity against SARS-CoV-2 infection in vitro. Preprints. https://www.preprints.org/manuscript/202007.0102/v1
Gupta, P., Narang, M., Gomber, S., & Saha, R. (2017). Effect of quinine and artesunate combination therapy on platelet count of children with severe malaria. Paediatrics and International Child Health, 37(2), 139-143. https://doi.org/10.1080/20469047.2016.1209883
Gutow, J. H. (2005). Halide (Cl-) quenching of quinine sulfate fluorescence: A time-resolved fluorescence experiment for physical chemistry. Journal of Chemical Education, 82(2), 302-305. https://doi.org/10.1021/ed082p302
Johnstone, D., Tausz, M., Moore, G., & Nicolas, M. (2014). Bark and leaf chlorophyll fluorescence linked to wood structural changes in Eucalyptus saligna. AoB PLANTS, 6, plt057. https://doi.org/10.1093/aobpla/plt057
Johnstone, D., Tauz, M., Moore, G., & Nicolas, M. (2012). Chlorophyll fluorescence of the trunk rather than leaves indicates visual vitality in Eucalyptus saligna. Trees, 26, 1565-1576. https://doi.org/10.1007/s00468-012-0730-7
Jones, M. M. & Champion, G. R. (1978) A simple liquid-liquid extraction experiment for freshmen. Journal of Chemical Education, 55(2), 119. https://doi.org/10.1021/ed055p119
Joshi, S., & Pant, D. D. (2015). Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 49-59. https://doi.org/10.1016/j.saa.2015.03.115
Kacprzak, K. M. (2013). Chemistry and Biology of Cinchona Alkaloids. In K. G. Ramawat, J. M. Mérillon (Eds.), Natural Products. Berlin: Springer Verlag. https://doi.org/10.1007/978-3-642-22144-6_22
Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V. K., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M. D., Samborska, I. A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S., & Bąba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132, 13-66. https://doi.org/10.1007/s11120-016-0318-y
Kalaji, H. M., Schansker, G., Ladle, R. J., Goltsev, V., Bosa, K., Allakhverdiev, S. I., Brestic, M., Bussotti, F., Calatayud, A., Dąbrowski, P., Elsheery, N. I., Ferroni, L., Guidi, L., Hogewoning, S. W., Jajoo, A., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Poli, DB., Pollastrini, M., Romanowska-Duda, Z. B., Rutkowska, B., Serôdio, J., Surech, K., Szulc, W., Tambussi, E., Yanniccari, M., & Zaivak, M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122, 121-158. https://doi.org/10.1007/s11120-014-0024-6
Linnewiel, H. A., & Visser, B. J. (1962). Fluorescence of quinine in an alkaline medium and in absolute ethanol. Nature, 195, 699. https://doi.org/10.1038/195699a0
Liu, D. T., Besser, G., Oeller, F., Mueller, C. A., & Renner, B. (2020). Bitter Taste Perception of the Human Tongue Mediated by Quinine and Caffeine Impregnated Taste Strips. Annals of Otology, Rhinology & Laryngology, 129(8), 813-820. https://doi.org/10.1177/0003489420906187
MacCormac, A., O’Brien, E., & O’Kennedy, R. (2010). Classroom activity connections: Lessons from fluorescence. Journal of Chemical Education, 87(2), 685-686. https://doi.org/10.1021/ed100262t
Mahmood, S. (2020). Instructional Strategies for Online Teaching in COVID-19 Pandemic. Human Behavior and Emerging Technology, 3, 199–203. https://doi.org/10.1002/hbe2.218
Marshall, J., & Johnsen, S. (2017). Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B, 372, 20160335. https://doi.org/10.1098/rstb.2016.0335
McKnelly, K. J., Howitz, W. J., Lam, S., & Link, R. D. (2020). Extraction on paper activity: An active learning technique to facilitate student understanding of liquid-liquid extraction. Journal of Chemical Education, 97(7), 1960-1965. https://doi.org/10.1021/acs.jchemed.9b00975
Murauer, A. & Ganzera, M. (2018). Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography. Journal of Chromatography A, 1554, 117-122. https://doi.org/10.1016/j.chroma.2018.04.038
Muyskens, M. & Vitz, E. (2006). The fluorescence of Lignum nephriticum: A flash back to the past and a simple demonstration of natural substance fluorescence. Journal of Chemical Education, 83(5), 765-768. https://doi.org/10.1021/ed083p765
Muyskens, M. (2006). pHantastic fluorescence. Journal of Chemical Education, 83(5), 768A-768B. https://doi.org/10.1021/ed083p768A
Naviglio, D., Montesano, D., & Gallo, M. (2015). Laboratory production of lemon liqueur (Limoncello) by conventional maceration and a two-syringe system to illustrate rapid solid-liquid dynamic extraction. Journal of Chemical Education, 92(5), 911-915. https://doi.org/10.1021/ed400379g
Noriega, P., Sola, M., Barukcic, A., Garcia, K., & Osorio, E. (2015). Cosmetic antioxidant potential of extracts from species of the Cinchona pubescens (Vahl). International Journal of Phytocosmetics and Natural Ingredients, 2, 14. https://doi.org/10.15171/ijpni.2015.14
Parajó, J. C., Dominguez, H., Santos, V., Alonso, J. L., & Garrote, G. (2008). Teaching sustainable development concepts in the laboratory: A solid-liquid extraction experiments. Journal of Chemical Education, 85(7), 972-975. https://doi.org/10.1021/ed085p972
Pedrós, R., Moya, I., Goulas, Y., & Jacquemoud, S. (2008). Chlorophyll fluorescence emission spectrum inside a leaf. Photochemical & Photobiology Sciences, 7, 498-502. https://doi.org/10.1039/b719506k
Plyashkevich A. M. & Zamyshlyaeva, M. D. (1970). Problems of liquid extraction in the chemical and pharmaceutical industry. Khimiko-Farmatsevticheskii Zhurnal, 4(10), 34-42. https://doi.org/10.1007/BF00763246
Radford, S. A., Hunter Jr., R. E., Barr, D. B., & Ryan, P. B. (2013). Liquid-liquid extraction of insecticides from juice: An analytical chemistry laboratory experiment. Journal of Chemical Education, 90, 483-486. https://doi.org/10.1021/ed300389p
Rivera-Figueroa, A. M., Ramazan, K. A., & Finlayson-Pitts, B. J. (2004). Fluorescence, absorption, and excitation spectra of polycyclic aromatic hydrocarbons as a tool for quantitative analysis. Journal of Chemical Education, 81(2), 242-245. https://doi.org/10.1021/ed081p242
Sampaio, C. I., Sousa, L. F., & Dias, A. M. (2020). Separation of anthocyaninic and nonanthocyaninic flavonoids by liquid-liquid extraction based on their acid-base properties: A green chemistry approach. Journal of Chemical Education, 97(12), 4533-4539. https://doi.org/10.1021/acs.jchemed.0c00139
Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigment and methods of analysis. Trends in Food Science & Technology, 13, 361-371. https://doi.org/10.1016/S0924-2244(02)00182-6
Schryver, S. B. (1909). The chemistry of chlorophyll. Science Progress in the Twentieth Century (1906-1916), 3(11), 425-449.
Schulman, S. G., Threatte, R. M., Capomacchia, A. C., & Paul, W. L. (1974). Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media. Journal of Pharmaceutical Sciences, 63(6), 876-880. https://doi.org/10.1002/jps.2600630615
Schultz, M., Callahan, D. L., & Miltiadous, A. (2020). Development and use of kitchen chemistry home practical activities during unanticipated campus closures. Journal of Chemical Education, 97(9), 2678-2684. https://doi.org/10.1021/acs.jchemed.0c00620
Singh, R., & Sharma, B. (2019). Therapeutic potential of plant based natural compounds for malaria – Recent advances and future perspectives. EC Pharmacology and Toxicology, 7(10), 1078-1089.
Strauch, S., Dressman, J. B., Shah, V. P., Kopp, S., Polli, J. E., & Barends, D. M. (2011). Biowaver monographs for immediate-release solid oral dosage forms: quinine sulfate. Journal of Pharmaceutical Sciences, 101(2), 499-508. https://doi.org/10.1002/jps.22810
Taboada, C., Brunetti, A. E., Pedron, F. N. Neto, F. C., Estrin, D. A., Bari, S. E., Chemes, L. B., Lopes, N. P., Lagorio, M. G., & Faivovich, J. (2017). Naturally occurring fluorescence in frogs. PNAS, 114(14), 3672-3677. https://doi.org/10.1073/pnas.1701053114
Taniguchi, M., Lindsey, J. S. (2021) Absorption and fluorescence spectral database of chlorophylls and analogues. Photochemistry and Photobiology, 97, 136-165. https://doi.org/10.1111/php.13319
Tausch, M. W., Meuter, N., Spinnen, S. (2017). Photoprocesses in chemical education. Key experiments for core concepts. Educación Química, 28(3), 120-126. https://doi.org/10.1016/j.eq.2017.03.003
Turner, D. E. (1994). An experiment to demonstrate the effect of pH on partition coefficients in liquid-liquid extraction. Journal of Chemical Education, 71(2), 173-174. https://doi.org/10.1021/ed071p173
Usher, K. M., Simmons, C. R., Keating, D. W., & Rossi, H. F. (2020). Determination of niacinamide in lotions and creams using liquid-liquid extraction and high-performance liquid chromatography. Journal of Chemical Education, 92(5), 907-910. https://doi.org/10.1021/ed500788q
Wall, M. E., Taylor, H., Ambrosio, L., & Davis, K. (1969). Plant antitumor agents III: A convenient separation of tannins from other plant constituents. Journal of Pharmaceutical Sciences, 58(7), 839-841. https://doi.org/10.1002/jps.2600580709
Wharton, J., Izaguirre, I., Surdock, A., VandenBerg, M., Bolhuis, S., Howard, J., Muyskens, M. (2018). Hands-on demonstration of natural substance fluorescence in simple tree extracts: Sycamore. Journal of Chemical Education, 95(4), 615-619. https://doi.org/10.1021/acs.jchemed.7b00611
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fabio Granados-Chinchilla, Luis Felipe Campos-Arguedas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Authors