An undergrad experiment for the at-home study of fluorescence: Extraction of quinine and chlorophyll from Cinchona tree bark


Abstract views: 394 / PDF downloads: 136

Authors

  • Fabio Granados-Chinchilla Unaffiliated Independent Researcher https://orcid.org/0000-0003-4828-3727
  • Luis Felipe Campos-Arguedas Centro de Investigación en Nutrición Animal, Universidad de Costa Rica

DOI:

https://doi.org/10.51724/ijpce.v15i1.146

Keywords:

chlorophyll, fluorescence, liquid-liquid and solid-liquid extraction, quinine, reflux

Abstract

Herein we describe a method for the effective extraction and qualitative detection of quinine and chlorophyll. Both compounds can be successfully extracted from Cinchona tree bark (Cinchona pubescens Vahl) using nothing but household materials, usually cheap and easily acquired items available in any hardware store. During solid-liquid extraction with reflux, using an organic solvent is used to retain both compounds. Afterward, the compounds are partitioned between water and paint solvent. The organic phase containing the chlorophyll is saved, and the aqueous layer is acidified. Finally, an ultraviolet (UV) light is used to provoke fluorescence in both compounds. 

Downloads

Download data is not yet available.

References

Acuña, A. U. (2007). More thoughts on the Narra Tree Fluorescence. Journal of Chemical Education, 84(2), 231. https://doi.org/10.1021/ed084p231

Al-Soufi, W., Carranza-García, J., & Novo, M. (2020). When the kitchen turns into a physical chemistry lab. Journal of Chemical Education, 97(9), 3090-3096. https://doi.org/10.1021/acs.jchemed.0c00745

Atici, Ö., Atici, T. (2012). Investigating in biology syllabus topics at photosynthesis experiments of the effect student achievement and their diversification. The Journal of Turkish Educational Sciences, 10(1), 143-166.

Aymard, G. A. (2019). A brief outline on current taxonomical and nomenclatural aspects of the genus Cinchona (Rubiaceae-Cinchoneae). Revista Académica Colombiana de Ciencias Exactas Físicas y Naturales, 43(supl), 234-241. https://doi.org/10.18257/raccefyn.1079

Bauer, R. K., Szalay, L., & Tombacz, E. (1972). Migration of electronic energy from chlorophyll b to chlorophyll a in solutions. Biophysical Journal, 12(7), 731-745. https://doi.org/10.1016/S0006-3495(72)86117-4

Boratyński, P. J., Zielińska-Błajet, M., & Skarżewski, J. (2019). Cinchona Alkaloids – Derivatives and Applications. In H-J. Knöller (Ed.), The Alkaloids Chemistry and Biology. Amsterdam: Elsevier.

Buchberger, A. R., Evans, T., & Doolittle, P. (2020). Analytical Chemistry Online? Lessons learned from Transitioning a project lab online due to COVID-19. Journal of Chemical Education, 97(9), 2976–2980. https://doi.org/10.1021/acs.jchemed.0c00799

Canales, N. A., Gress Hansen, T. N., Cornett, C., Wlaker, K., Driver, F., Antonelli, A., Maldonado, C., Nesbitt, M., Barnes, C. J., & Rønsted, N. (2020). Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography. Journal of Ethnopharmacology, 249, 112375. https://doi.org/10.1016/j.jep.2019.112375

Celius, T. C., Peterson, R.C., Anderson-Wile, A. M., & Kraweic-Thayer, M. (2018). From observation to prediction to application: A guided exercise for liquid-liquid extraction. Journal of Chemical Education, 95(9), 1626-1630. https://doi.org/10.1021/acs.jchemed.7b00779

Ciaccio, J. A., & Hassan, K. (2020). Modified method for extraction of photosynthetic plant pigments for microcolumn chromatography. Journal of Chemical Education, 97(8), 2362-2365. https://doi.org/10.1021/acs.jchemed.0c00503

Clarke, R. J., & Oprysa, A. (2004). Fluorescence and light scattering. Journal of Chemical Education, 81(5), 705-707. https://doi.org/10.1021/ed081p705

D’Alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ilboudo, D. P., Ferrante, P., & Delbue, S. (2020). The use of antimalarial drugs against viral infection. Microorganisms, 8(1), 85. https://doi.org/10.3390/microorganisms8010085

Darken, M. A. (1961). Natural and induced fluorescence in microscopic organisms. Applied Microbiology, 9(4), 354-360. https://doi.org/10.1128/am.9.4.354-360.1961

Fortman, J. J. & Stubbs, K. M. (1992). Demonstrations with Red Cabbage Indicator. Journal of Chemical Education, 69(1), 66. https://doi.org/10.1021/ed069p66.1

Gachelin, G., Garner, P., Ferroni, E., & Tröhler, U., Chalmers, I. (2017). Evaluating Cinchona bark and quinine for treating and preventing malaria. Journal of the Royal Society of Medicine, 110(1), 31-40. https://doi.org/10.1177/0141076816681421

Gisselmann, G., Alisch, D., Welbers-Joop, B., Hatt, H. (2018). Effects of Quinine, Quinidine and Chloroquine on Human Muscle Nicotinic Acetylcholine Receptors. Frontiers in Pharmacology, 9, 1339. https://doi.org/10.3389/fphar.2018.01339

Gong, X., Li, Y., & Qu, H. (2014). Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: A case study of Danshen injection. Molecules, 19, 18705-18720. https://doi.org/10.3390/molecules191118705

Große, M., Ruetalo, N., Businger, R., Rheber, S., Setz, C., Rauch, P., Auth, J., Brysch, E., Schindler, M., & Schubert, U. (2020). Evidence that quinine exhibits antiviral activity against SARS-CoV-2 infection in vitro. Preprints. https://www.preprints.org/manuscript/202007.0102/v1

Gupta, P., Narang, M., Gomber, S., & Saha, R. (2017). Effect of quinine and artesunate combination therapy on platelet count of children with severe malaria. Paediatrics and International Child Health, 37(2), 139-143. https://doi.org/10.1080/20469047.2016.1209883

Gutow, J. H. (2005). Halide (Cl-) quenching of quinine sulfate fluorescence: A time-resolved fluorescence experiment for physical chemistry. Journal of Chemical Education, 82(2), 302-305. https://doi.org/10.1021/ed082p302

Johnstone, D., Tausz, M., Moore, G., & Nicolas, M. (2014). Bark and leaf chlorophyll fluorescence linked to wood structural changes in Eucalyptus saligna. AoB PLANTS, 6, plt057. https://doi.org/10.1093/aobpla/plt057

Johnstone, D., Tauz, M., Moore, G., & Nicolas, M. (2012). Chlorophyll fluorescence of the trunk rather than leaves indicates visual vitality in Eucalyptus saligna. Trees, 26, 1565-1576. https://doi.org/10.1007/s00468-012-0730-7

Jones, M. M. & Champion, G. R. (1978) A simple liquid-liquid extraction experiment for freshmen. Journal of Chemical Education, 55(2), 119. https://doi.org/10.1021/ed055p119

Joshi, S., & Pant, D. D. (2015). Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 49-59. https://doi.org/10.1016/j.saa.2015.03.115

Kacprzak, K. M. (2013). Chemistry and Biology of Cinchona Alkaloids. In K. G. Ramawat, J. M. Mérillon (Eds.), Natural Products. Berlin: Springer Verlag. https://doi.org/10.1007/978-3-642-22144-6_22

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V. K., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M. D., Samborska, I. A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S., & Bąba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132, 13-66. https://doi.org/10.1007/s11120-016-0318-y

Kalaji, H. M., Schansker, G., Ladle, R. J., Goltsev, V., Bosa, K., Allakhverdiev, S. I., Brestic, M., Bussotti, F., Calatayud, A., Dąbrowski, P., Elsheery, N. I., Ferroni, L., Guidi, L., Hogewoning, S. W., Jajoo, A., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Poli, DB., Pollastrini, M., Romanowska-Duda, Z. B., Rutkowska, B., Serôdio, J., Surech, K., Szulc, W., Tambussi, E., Yanniccari, M., & Zaivak, M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122, 121-158. https://doi.org/10.1007/s11120-014-0024-6

Linnewiel, H. A., & Visser, B. J. (1962). Fluorescence of quinine in an alkaline medium and in absolute ethanol. Nature, 195, 699. https://doi.org/10.1038/195699a0

Liu, D. T., Besser, G., Oeller, F., Mueller, C. A., & Renner, B. (2020). Bitter Taste Perception of the Human Tongue Mediated by Quinine and Caffeine Impregnated Taste Strips. Annals of Otology, Rhinology & Laryngology, 129(8), 813-820. https://doi.org/10.1177/0003489420906187

MacCormac, A., O’Brien, E., & O’Kennedy, R. (2010). Classroom activity connections: Lessons from fluorescence. Journal of Chemical Education, 87(2), 685-686. https://doi.org/10.1021/ed100262t

Mahmood, S. (2020). Instructional Strategies for Online Teaching in COVID-19 Pandemic. Human Behavior and Emerging Technology, 3, 199–203. https://doi.org/10.1002/hbe2.218

Marshall, J., & Johnsen, S. (2017). Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B, 372, 20160335. https://doi.org/10.1098/rstb.2016.0335

McKnelly, K. J., Howitz, W. J., Lam, S., & Link, R. D. (2020). Extraction on paper activity: An active learning technique to facilitate student understanding of liquid-liquid extraction. Journal of Chemical Education, 97(7), 1960-1965. https://doi.org/10.1021/acs.jchemed.9b00975

Murauer, A. & Ganzera, M. (2018). Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography. Journal of Chromatography A, 1554, 117-122. https://doi.org/10.1016/j.chroma.2018.04.038

Muyskens, M. & Vitz, E. (2006). The fluorescence of Lignum nephriticum: A flash back to the past and a simple demonstration of natural substance fluorescence. Journal of Chemical Education, 83(5), 765-768. https://doi.org/10.1021/ed083p765

Muyskens, M. (2006). pHantastic fluorescence. Journal of Chemical Education, 83(5), 768A-768B. https://doi.org/10.1021/ed083p768A

Naviglio, D., Montesano, D., & Gallo, M. (2015). Laboratory production of lemon liqueur (Limoncello) by conventional maceration and a two-syringe system to illustrate rapid solid-liquid dynamic extraction. Journal of Chemical Education, 92(5), 911-915. https://doi.org/10.1021/ed400379g

Noriega, P., Sola, M., Barukcic, A., Garcia, K., & Osorio, E. (2015). Cosmetic antioxidant potential of extracts from species of the Cinchona pubescens (Vahl). International Journal of Phytocosmetics and Natural Ingredients, 2, 14. https://doi.org/10.15171/ijpni.2015.14

Parajó, J. C., Dominguez, H., Santos, V., Alonso, J. L., & Garrote, G. (2008). Teaching sustainable development concepts in the laboratory: A solid-liquid extraction experiments. Journal of Chemical Education, 85(7), 972-975. https://doi.org/10.1021/ed085p972

Pedrós, R., Moya, I., Goulas, Y., & Jacquemoud, S. (2008). Chlorophyll fluorescence emission spectrum inside a leaf. Photochemical & Photobiology Sciences, 7, 498-502. https://doi.org/10.1039/b719506k

Plyashkevich A. M. & Zamyshlyaeva, M. D. (1970). Problems of liquid extraction in the chemical and pharmaceutical industry. Khimiko-Farmatsevticheskii Zhurnal, 4(10), 34-42. https://doi.org/10.1007/BF00763246

Radford, S. A., Hunter Jr., R. E., Barr, D. B., & Ryan, P. B. (2013). Liquid-liquid extraction of insecticides from juice: An analytical chemistry laboratory experiment. Journal of Chemical Education, 90, 483-486. https://doi.org/10.1021/ed300389p

Rivera-Figueroa, A. M., Ramazan, K. A., & Finlayson-Pitts, B. J. (2004). Fluorescence, absorption, and excitation spectra of polycyclic aromatic hydrocarbons as a tool for quantitative analysis. Journal of Chemical Education, 81(2), 242-245. https://doi.org/10.1021/ed081p242

Sampaio, C. I., Sousa, L. F., & Dias, A. M. (2020). Separation of anthocyaninic and nonanthocyaninic flavonoids by liquid-liquid extraction based on their acid-base properties: A green chemistry approach. Journal of Chemical Education, 97(12), 4533-4539. https://doi.org/10.1021/acs.jchemed.0c00139

Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigment and methods of analysis. Trends in Food Science & Technology, 13, 361-371. https://doi.org/10.1016/S0924-2244(02)00182-6

Schryver, S. B. (1909). The chemistry of chlorophyll. Science Progress in the Twentieth Century (1906-1916), 3(11), 425-449.

Schulman, S. G., Threatte, R. M., Capomacchia, A. C., & Paul, W. L. (1974). Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media. Journal of Pharmaceutical Sciences, 63(6), 876-880. https://doi.org/10.1002/jps.2600630615

Schultz, M., Callahan, D. L., & Miltiadous, A. (2020). Development and use of kitchen chemistry home practical activities during unanticipated campus closures. Journal of Chemical Education, 97(9), 2678-2684. https://doi.org/10.1021/acs.jchemed.0c00620

Singh, R., & Sharma, B. (2019). Therapeutic potential of plant based natural compounds for malaria – Recent advances and future perspectives. EC Pharmacology and Toxicology, 7(10), 1078-1089.

Strauch, S., Dressman, J. B., Shah, V. P., Kopp, S., Polli, J. E., & Barends, D. M. (2011). Biowaver monographs for immediate-release solid oral dosage forms: quinine sulfate. Journal of Pharmaceutical Sciences, 101(2), 499-508. https://doi.org/10.1002/jps.22810

Taboada, C., Brunetti, A. E., Pedron, F. N. Neto, F. C., Estrin, D. A., Bari, S. E., Chemes, L. B., Lopes, N. P., Lagorio, M. G., & Faivovich, J. (2017). Naturally occurring fluorescence in frogs. PNAS, 114(14), 3672-3677. https://doi.org/10.1073/pnas.1701053114

Taniguchi, M., Lindsey, J. S. (2021) Absorption and fluorescence spectral database of chlorophylls and analogues. Photochemistry and Photobiology, 97, 136-165. https://doi.org/10.1111/php.13319

Tausch, M. W., Meuter, N., Spinnen, S. (2017). Photoprocesses in chemical education. Key experiments for core concepts. Educación Química, 28(3), 120-126. https://doi.org/10.1016/j.eq.2017.03.003

Turner, D. E. (1994). An experiment to demonstrate the effect of pH on partition coefficients in liquid-liquid extraction. Journal of Chemical Education, 71(2), 173-174. https://doi.org/10.1021/ed071p173

Usher, K. M., Simmons, C. R., Keating, D. W., & Rossi, H. F. (2020). Determination of niacinamide in lotions and creams using liquid-liquid extraction and high-performance liquid chromatography. Journal of Chemical Education, 92(5), 907-910. https://doi.org/10.1021/ed500788q

Wall, M. E., Taylor, H., Ambrosio, L., & Davis, K. (1969). Plant antitumor agents III: A convenient separation of tannins from other plant constituents. Journal of Pharmaceutical Sciences, 58(7), 839-841. https://doi.org/10.1002/jps.2600580709

Wharton, J., Izaguirre, I., Surdock, A., VandenBerg, M., Bolhuis, S., Howard, J., Muyskens, M. (2018). Hands-on demonstration of natural substance fluorescence in simple tree extracts: Sycamore. Journal of Chemical Education, 95(4), 615-619. https://doi.org/10.1021/acs.jchemed.7b00611

Downloads

Published

06/20/2024

How to Cite

Granados-Chinchilla, F., & Campos-Arguedas, L. F. (2024). An undergrad experiment for the at-home study of fluorescence: Extraction of quinine and chlorophyll from Cinchona tree bark. International Journal of Physics and Chemistry Education, 15(1), 5–10. https://doi.org/10.51724/ijpce.v15i1.146