Teaching food analysis through unknowns: Study case for methylxanthines, organic acids, and sugars examination over liquid chromatography
Abstract views: 187 / PDF downloads: 112
DOI:
https://doi.org/10.51724/ijpce.v15i2.355Keywords:
food analysis, unknowns, liquid chromatography, methylxanthines, organic acids, sugarsAbstract
Three laboratory sessions are described, each one focused on a distinct group of analytes (i.e., 1. Methylxanthines, 2. Organic acids 3. Sugars). To study each analyte group, food profiling was achieved using liquid chromatography; where each analyte (n = 3, 15, and 5 analytes for methylxanthines, organic acids, and sugars, respectively) was identified and quantified. Different food samples (including beverages, powders, cereals, and dairy products) were given to students who within each class knew the possible identities of the group of samples given but had to pair, after examination, the resulting profiles obtained with each food sample as the food samples were unidentified (unknowns). Quali/Quantitative data were recollected from the resulting chromatograms after each food was subjected to analysis. For organic acids, solid phase extraction and potentiometry were used as tools to demonstrate separation science from colored drinks as sample pretreatment and as a classic alternative for instrumental analysis.
Downloads
References
Al-Mhanna, N. M., Huebner, H., & Bucholz, R. (2018). Analysis of the sugar content in food products by using gas chromatography-mass spectrometry and enzymatic methods. Foods, 7(11), 185. https://doi.org/10.3390/foods7110185
Ayyildiz, S. S., Karadeniz, B., Sagcan, N., Bahar, B., Us, A. A., & Alasalvar, C. (2018). Optimizing the extraction parameters of epigallocatechin gallate using conventional hot water and ultrasound-assisted methods from green tea. Food and Bioproducts Processing, 111, 37-44. https://doi.org/10.1016/j.fbp.2018.06.003
Bangar, S. P., Suri, S., Trif, M., & Özogul, F. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, 101615. https://doi.org/10.1016/j.fbio.2022.101615
Bittman, R. (1974). Analysis of reducing sugars in breakfast cereal and other foods. Journal of Chemical Education, 51(1), 46-47. https://doi.org/10.1021/ed051p46
Bodner, G. M. (2015). Research on problem solving in chemistry. In J. Garcia-Martinez, & E. Serrano-Torregosa (Eds.). Chemistry Education: Best Practices, Opportunities and Trends (pp. 181-202). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527679300.ch8
Bodner, G. M., & Bhattacharyya, G. (2018). A cultural approach to problem-solving. Educación Química, 16(2), 222-229. https://doi.org/10.22201/fq.18708404e.2005.2.66115
Bodner, G. M., & Domin, D. S. (2000). Mental models: The role of representations in problem solving in chemistry. University Chemistry Education, 4(1), 24-30. Available at: https://chemed.chem.purdue.edu/chemed/bodnergroup/pdf/48_Mental%20Models%20UCEd.pdf
Borja Fajardo, J. G., Tellez, H. B. H., Atuesta, G. C. P., Aldana, A. P. S., & Arteaga, J. J. M. (2022). Antioxidant activity, total polyphenol content, and methylxantine ratio in four materials of Theobroma cacao L. from Tolima, Colombia. Heliyon, 8, e09402. https://doi.org/10.1016/j.heliyon.2022.e09402
Boro, D. (2023). Analyzing the role of organic chemistry in food preservation and flavor maintenance. Organic Chemistry: Current Research, 12(4), 331.
Brenneman, C. A., Ebeler, S. E. (1999). Chromatographic separations using solid-phase extraction cartridges: Separation of wine phenolics. Journal of Chemical Education, 76(12), 1710-1711. https://doi.org/10.1021/ed076p1710
Buszewski, B., Bocian, S., & Felinger, A. (2012). Artifacts in liquid-phase separations−System, solvent, and impurity peaks. Chemical Reviews, 112, 2629−2641. https://doi.org/10.1021/cr200182j
Castro, L. F., Peuker, S., & Mott, J. (2021). Application of team-based learning for teaching food analysis. Journal of Food Science Education, 20, 78–87. https://doi.org/10.1111/1541-4329.12223
Chen, T., Liang, W., Zhang, X., Wang, Y., Lu, X., Zhang, Y., Zhang, Z., You, L., Liu, X., Zhao, C., & Xu, G. (2024). Screening and identification of unknown chemical contaminants in food based on liquid chromatography-high-resolution mass spectrometry and machine learning. Analytica Chimica Acta, 1287, 342116. https://doi.org/10.1016/j.aca.2023.342116
Chin, J. M., Merves, M. L., Goldberger, B. A., Sampson-Cone, A., & Cone, E. J. (2008). Caffeine content of brewed teas. Journal of Analytical Toxicology, 32(8), 702-704. https://doi.org/10.1093/jat/32.8.702
Cimpoiu, C., Hosu, A., Seserman, L., Sandru, M., & Miclaus, V. (2010). Simultaneous determination of methylxanthines in different types of tea by a newly developed and validated TLC method. Journal of Separation Science, 33, 3794–3799. https://doi.org/10.1002/jssc.201000554
Cortés-Herrera, C., Artavia, G., Leiva, A., & Granados-Chinchilla, F. (2019). Liquid chromatography analysis of common nutritional components, in feed and food. Foods, 8, 1. https://doi.org/10.3390/foods8010001
Cywińska-Antonik, M., Chen, Z., Groele, B., & Marszałek, K. (2023). Application of emerging techniques in reduction of the sugar content of fruit juice: Current challenges and future perspectives. Foods, 12, 1181. https://doi.org/10.3390/foods12061181
Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-free dairy products: Market developments, production, nutrition and health benefits. Nutrients, 11, 551. https://doi.org/10.3390/nu11030551
Dimidi, E., Cox, S. R., Rossi, M., & Whelan, K. (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11, 1806. https://doi.org/10.3390/nu11081806
Ferreiro-González, M., Carrera, C., Ruiz-Rodríguez, A., Barbero, G. F., Ayuso, J., Palma, M., & Barroso, C. G. (2014). A new solid phase extraction for the determination of anthocyanins in grapes. Molecules, 19, 21398-21410. https://doi.org/10.3390/molecules191221398
Franco-Mariscal, A. J. (2018). Discovering the chemical elements in food. Journal of Chemical Education, 95(3), 403–409. https://doi.org/10.1021/acs.jchemed.7b00218
Gawron-Gzella, A., Chanaj-Kaczmarek, J., & Cielecka-Piontek, J. (2021). Yerba Mate—A long but current history. Nutrients, 13(11), 3706. https://doi.org/10.3390/nu13113706
Gonzales-Yépez, K. A., Vilela, J. L., & Reátegui, O. (2023). Determination of caffeine, theobromine, and theophylline by HPLC-DAD in beverages commonly consumed in Lima, Peru. International Journal of Food Science, 2023, 4323645. https://doi.org/10.1155/2023/4323645
Güzel-Seydim, Z. B., Seydim A. C., Greene, A.K., & Bodine A. B. (2000). Determination of organic acids and volatile flavor substances in kefir during fermentation. Journal of Food Composition and Analysis, 13, 35-43. https://doi.org/10.1006/jfca.1999.0842
He, L. (2019). Food chemistry as a vital science: Past, present, future. ACS Symposium Series, 1314, 231-238. https://doi.org/10.1021/bk-2019-1314.ch016
Huang, Y., Kypridemos, C., Liu, J., Lee, Y., Pearson-Stuttard, J., Collin, B., Bandosz, P., Capewell, S., Whitsel, L., Wilde, P., Mozaffarian, D., O’Flaherty, M., & Micha, R. (2019). Cost-effectiveness of the U.S. FDA added sugar labeling policy for improving diet and health. Circulation, 139(23), 2613-2624. https://doi.org/10.1161/CIRCULATIONAHA.118.036751
Jankech, T., Maliarová, M., & Martinka, N. (2019). Determination of methylxanthines in tea samples by HPLC method. Nova Biotechnologica et Chimica, 18(2), 124-132. https://doi.org/10.2478/nbec-2019-0015
Jean-Marie, E., Bereau, D., & Robinson, J.-C. (2021). Benefits of polyphenols and methylxanthines from cocoa beans on dietary metabolic disorders. Foods, 10, 2049. https://doi.org/10.3390/foods10092049
Jiyoon Kim, E., Ellison, B., McFadden, B., & Pflugh Prescott, M. (2021). Consumers’ decisions to access or avoid added sugars information on the updated Nutrition Facts label. PLoS One, 16(3), e0249355. https://doi.org/10.1371/journal.pone.0249355
Jurková, M., Olšovská, J., & Čejka, P. (2018). Determination of sugars and saccharides in beer. Kvasný Průmysl, 64, 58-64. https://doi.org/10.18832/kp201812
Knolhoff, A. M., Zweigenbaum, J. A., & Croley, T. R. (2016). Non-targeted screening of food matrices: Development of a chemometric software strategy to identify unknowns in liquid chromatography–mass Spectrometry. Data Analytical Chemistry, 88(7), 3617–3623. https://doi.org/10.1021/acs.analchem.5b04208
Kuley, E., Özyurt, G., Özogul, I., Boga, M., Akyol, I., Rocha, J. M., & Özogul, F. (2020). The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability. Microorganisms, 8, 172. https://doi.org/10.3390/microorganisms8020172
Li, H., & Liu, F. (2015). Changes in organic acids during beer fermentation. Journal of the American Society of Brewing Chemists, 73(3), 275-279. https://doi.org/10.1094/ASBCJ-2015-0509-01
Liotta, L. J., & James-Pederson, M. (2008). Identification of an unknown compound by combined use of IR, 1H NMR, 13C NMR, and mass spectrometry: A real-life experience in structure determination. Journal of Chemical Education, 85(6), 832. https://doi.org/10.1021/ed085p832
Loppnow, G. I. (2018). The unknown exercise: Engaging first-year university students in classroom discovery and active learning on an iconic chemistry question. Journal of Chemical Education, 95(7), 1146–1150. https://doi.org/10.1021/acs.jchemed.7b00852
Louie, J, Moshtaghian, H., Boylan, S., Flood, V., Rangan, A., Barclay, A., Brand-Miller, J. C., & Gill, T. (2015). A systematic methodology to estimate the added sugar content of foods. European Journal of Clinical Nutrition, 69(2), 154-61. https://doi.org/10.1038/ejcn.2014.256
Luo, P., Luo, M. Z., & Baldwin, R. P. (1993). Determination of sugars in food products. Using HPLC and electrochemical detection at a Cu electrode. Journal of Chemical Education, 70(8), 679-681. https://doi.org/10.1021/ed070p679
Magwaza, L. S., & Opara, U. L. (2015). Analytical methods for determination of sugars and sweetness of horticultural products—A review. Scientia Horticulturae, 184, 179-192. http://dx.doi.org/10.1016/j.scienta.2015.01.001
McClements D. J. (2019). Future foods. How modern science is transforming the way we eat (1st Ed.). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-12995-8
McClements D. J., & Großmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. npj Science of Food, 5(1), 17. https://doi.org/10.1038/s41538-021-00099-y
Md Noh, M. F., Gunasegavan, R. D-N., Khalid, N. M., Balasubramaniam, V., Mustar, S., & Rashed, A. A. (2020). Recent techniques in nutrient analysis for food composition database. Molecules, 25(19), 4567. https://doi.org/10.3390/molecules25194567
Menguy, L., Prim, D., Carlin-Sinclair, A., & Marc, I. (2009). The determination of methylxanthines in chocolate and cocoa by different separation techniques: HPLC, instrumental TLC, and MECC. Journal of Chemical Education, 86(11), 1307-1310. https://doi.org/10.1021/ed086p1307
Miranda, B., Lawton, N. M., Tachibana, S. R., Swartz, N., & Paige Hall, W. (2016). Titration and HPLC characterization of kombucha fermentation: A laboratory experiment in food analysis. Journal of Chemical Education, 93(10), 1770–1775. https://doi.org/10.1021/acs.jchemed.6b00329
Mondal, D. D., Chakraborty, U., Bera, M., Ghosh, S., & Kar, D. (2023). An overview of nutritional profiling in foods: Bioanalytical techniques and useful protocols. Frontiers in Nutrition, 10, 1124409. https://doi.org/10.3389/fnut.2023.1124409
Monteiro, J. P., Alves, M. G., Oliveira, P. F., & Silva, B. M. (2016). Structure-bioactivity relationships of methylxanthines: Trying to make sense of all the promises and the drawbacks. Molecules, 21, 974. https://doi.org/10.3390/molecules21080974
Monteiro, J., Alves, M. G., Oliveira, P. F., & Silva, B. M. (2019). Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Critical Reviews in Food Science and Nutrition, 59(16), 2597-2625. https://doi.org/10.1080/10408398.2018.1461607
Navarro, Y., Soengas, R., Iglesias, M. J., & López Ortiz, F. (2020). Use of NMR for the analysis and quantification of the sugar composition in fresh and store-bought fruit juices. Journal of Chemical Education, 97(3), 831–837. https://doi.org/10.1021/acs.jchemed.9b00651
Naviglio, D., & Gallo, M. (2020). Application of analytical chemistry to foods and food technology. Foods, 9(9), 1296. https://doi.org/10.3390/foods9091296
Nielsen, S. S. (Ed.). (2024). Food Analysis (Food Science Text Series) (6th Ed.). Springer Cham. https://doi.org/10.1007/978-3-319-45776-5
Novaki, L. P., Chinelatto, A. M., Silva, V. A. B. B., & El Seoud, O. A. (2021). Analysis of consumer products: Demonstrating the power of LC-MS/MS for the simultaneous analysis of caffeine and other methylxanthines in guaraná fruit powder extract. Journal of Chemical Education, 98(6), 2083–2089. https://doi.org/10.1021/acs.jchemed.0c01069
Ondrus, M. G., Wenzel, J., & Zimmerman G. L. (1983). Sugar determination in foods with a radially compressed high-performance liquid chromatography column. Journal of Chemical Education, 60(9), 776-778. https://doi.org/10.1021/ed060p776
Reddy, V. S., Shiva, S., Manikantan, S., & Ramakrishna, S. (2024). Pharmacology of caffeine and its effects on the human body. European Journal of Medicinal Chemistry Reports, 10, 100138. https://doi.org/10.1016/j.ejmcr.2024.100138
Reynolds, A., & Mitri, J. (2024). Dietary advice for individuals with diabetes. In K. R. Feingold, B. Anawalt, M. R. Blackman, et al. (Eds.), Endotext [Internet]. South Dartmouth, MA, USA: MDText.com, Inc. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279012/
Samarasekara, D, Hill, C., & Mlsna, D. (2018). Analysis and identification of major organic acids in wine and fruit juices by paper chromatography. Journal of Chemical Education, 95(9), 1621–1625. https://doi.org/10.1021/acs.jchemed.8b00129
Sanchez, J. M. (2017). Methylxanthine content in commonly consumed foods in Spain and determination of its intake during consumption. Foods, 6, 109. https://doi.org/10.3390/foods6120109
Shi, Y., Pu, D., Zhou, X., & Zhang, Y. (2022) Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods, 11(21), 3408. https://doi.org/10.3390/foods11213408
Srdjenovic, B., Djordjevic-Milic, V., Grujic, N., Injac, R., & Lepojevic, Z. (2008). Simultaneous HPLC determination of caffeine, theobromine, and theophylline in food, drinks, and herbal products. Journal of Chromatographic Science, 46(2), 144-149. https://doi.org/10.1093/chromsci/46.2.144
Stitzel, S. E., & Sours, R. E. (2013). High-performance liquid chromatography analysis of single-origin chocolates for methylxanthine composition and provenance determination. Journal of Chemical Education, 90(9), 1227-1230. https://doi.org/10.1021/ed3003918
Vénica, C., Perotti, M., & Bergamini, C. (2014). Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Science & Technology, 94, 561-580. https://doi.org/10.1007/s13594-014-0180-7
Villela, R. L. A., Borges, P. P., & Vyskočil, L. (2015). Comparison of methods for accurate end-point detection of potentiometric titrations. Journal of Physics: Conference Series, 575, 012033. https://doi.org/10.1088/1742-6596/575/1/012033
Vuilleumier, E. A. (1930). Unknowns for quantitative analysis. Journal of Chemical Education, 7(1), 68. https://doi.org/10.1021/ed007p68.1
Yuriev, E., Naidu, S., Schmbri, L. S., & Short, J. L. (2017). Scaffolding the development of problem-solving skills in chemistry: Guiding novice students out of dead ends and false starts. Chemistry Education Research and Practice, 18, 486-504. https://doi.org/10.1039/c7rp00009j
Zhang, H., Zhou, F., Ji, B., Nout, R. M. J., Fang, Q., & Yang, Z. (2008). Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method. European Food Research and Technology, 227, 1183–1190. https://doi.org/10.1007/s00217-008-0835-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fabio Granados-Chinchilla
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Authors