Students' Interpretations of Quantum Mechanics Concepts from Feynman's Sum of all Paths Applied to Light


Abstract views: 430 / PDF downloads: 281

Authors

  • Maria de los Angeles Fanaro Núcleo de Investigación en Educación en Ciencia y Tecnología Universidad Nacional del Centro de la Provincia de Buenos Aires & CONICET, Argentina
  • Marcelo Jose Fabian Arlego Núcleo de Investigación en Educación en Ciencia y Tecnología Universidad Nacional del Centro de la Provincia de Buenos Aires & CONICET, Argentina
  • Maria Rita Otero Núcleo de Investigación en Educación en Ciencia y Tecnología Universidad Nacional del Centro de la Provincia de Buenos Aires & CONICET, Argentina
  • Mariana Elgue Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

DOI:

https://doi.org/10.51724/ijpce.v10i2.19

Keywords:

Quantum, Light, Feynman, Double slit experiment, Conceptualization

Abstract

We analyse part of the implementation of a didactic sequence to teach different aspects of light in a unified non traditional framework. The goal was to propose the quantum theory of light as a universal framework to describe different phenomena observed. The laws of quantum mechanics for light using Feynman´s “Sum of all Paths” approach adapted to the mathematical level of the students was proposed as a model to explain the experiences. This particular denomination of Feynman´s approach is an intentional choice to avoid the language of "integral" because the students haven't had calculus. Graphic representations and basic operations with vectors capturing the essential aspects of the theory, were used. Simulations made with the software GeoGebra(R) and Modellus were created to help students visualize the formulation. The sequence was carried out in four courses (aged 15-16). For the data analysis, an answer categorization was formulated, considering among other aspects the quantum reformulation of experiment shown herein. This analysis seeks to understand the student´s conceptualization process about quantum interpretation. The results support the conclusion that the conceptualization is complex, and slow, due to both the concepts involved and the representation systems demanded by the situations.

Downloads

Download data is not yet available.

References

Ambrose, B., Shaffer, P., Steinberg, R., Lillian, C., & McDermott, L. (1999). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67, 146.

Arlego, A. Fanaro, M. and Otero, M. (2012) Teaching different aspects of light in the unified framework of quantum

Mechanics. Proceedings of The World Conference on Physics Education 2012, 795-802.

Fanaro, M, Otero, M. and Arlego, M. (2012 a) Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman’s Path Integrals Method. The Physics Teacher, 50, 156-158.

Fanaro, M, Otero, M., and Arlego, M. (2012b) A proposal to teach the light at secondary school from the Feynman method Problems of Education in the 21st Century, 47, 27-39.

Fanaro, M, Otero, M. and Elgue, M. (2014) Implementation of a proposal to teach quantum mechanics concepts from the Multiple Paths of Feynman applied to the light. Proceedings of GIREP-MPTL International Conference on Teaching/Learning Physics: Integrating Research into Practice, 225-232.

Fanaro, M, Arlego, M. and Otero, M. (2014) The double slit experience with light from Feynman´s Sum of Multiple Paths viewpoint. Revista Brasileira de Ensino de Física, 36, 1-7.

Otero, M., Fanaro, M, Sureda, P., Llanos, V.C., Arlego, M. (2014) La Teoría de los Campos Conceptuales y la conceptualización en el aula de Matemática y Física. Tandil, Argentina: Editorial Dunken.

Elgue, M. (2015) Enseñanza y aprendizaje de aspectos fundamentales de Física Cuántica en la escuela secundaria a partir del estudio de la luz. (Doctoral Thesis). Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina.

Fanaro, M, Elgue, M., and Otero, M. (2016) Secuencia para enseñar conceptos acerca de la luz desde el enfoque de Feynman para la mecánica cuántica en la escuela secundaria: un análisis basado en la teoría de los campos conceptuales. Caderno Brasileiro de Ensino de Física, 33, 477-506.

Cabral de Paulo, I., & Moreira, M A (2005). Um Estudo Sobre A Captação Do Significado Do Conceito De Dualidade Onda-Partícula Por Alunos Do Ensino Médio Enseñanza de las Ciencias, Número extra, 1-5.

Colin. P., & Viennot, L. (2001) Using two models in optics: Students’ difficulties and suggestions for teaching American Journal of Physics, 69, S36.

Cuppari, A., Rinaudo, G., Robutti, O., & Violino, P. (1997). Gradual introduction of some aspects of quantum mechanics in a high school curriculum, Physics Education, 32, 302-308.

Dobson, K., Lawrence, I., Britton, P. (2000.) The A to B of quantum physics Physics Education 35(6), 400-405.

Dowrick , N. J. (1997). Feynman’s sum-over-histories in elementary quantum mechanics European Journal of Physics, 18, 75-78.

Feynman, R (1985). QED The strange theory of light and matter. Princeton: Penguin Books.

Fischler, H., & Lichtfeldt, M. (1992). Modern Phisycs and students’ conceptions. International Journal of Science Education, 14(2), 181-190.

González, E., Fernández, P., & Solbes, J. (2000). Dificultades de docentes de ciencia en la conceptualización de temas de física actual. Actas del V Simposio de Investigación en Educación en Física, 1, 138-147.

Greca, I., Moreira, M. A., & Herscovitz, V. (2001). Uma Proposta para o Ensino de Mecânica Quântica. Revista Brasileira de Ensino de Física, 23, 444-457.

Hadzidaki, P. (2008). Quantum mechanics and scientific explanation. An explanatory strategy aiming at providing understanding. Science & Education, 17, 49–73.

Hanc, J., & Tuleja, S. (2005). The Feynman quantum mechanics with the help of Java applets and physlets in Slovakia. Proccedings of the 10th Workshop on Multimedia in Physics Teaching and Learning, Freie Universität Berlin, October 5-7.

Henriksen, E. K., Angell, C., Tellefsen, C.W., & Vetleseter Boe, M. (2015). Improving teaching and learning in quantum physics through educational design research. Nordic Studies in Science Education, 11, 153-168.

Henriksen, E. K., Bungum, B., Angell C., Tellefsen, C. W., Fragat, T., & Vetleseter Boe, M. (2014). Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches. Physics Education, 49, 678-684.

Ireson, G. (2000). The quantum understanding of pre-university physics students. Physics Education, 35, 15–21.

Krijtenburg-Lewerissa, K., Pol, H., Brinkman, A., & Joolingen, V. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education Physical Review Physics Education Research, 13, 1-21.

Lobato, T., & Greca, I. (2005). Analise da inserção de conteúdos de teoria quântica nos currículos de física do ensino médio. Ciencia & Educación, 11, 119-132.

Malgieri, M., Onorato, P., & De Ambrosis, A. (2014). Teaching quantum physics by the sum over paths approach and GeoGebra simulation. European Journal of Physics, 35, 1-21.

Malgieri, M., Onorato, P., & De Ambrosis, A. (2015a). What is light? From optics to quantum physics through the sum over paths approach. Proceedings of GIREP-MPTL 2014 International Conference, Teaching/Learning Physics Integrating research into practice, 639-646.

Malgieri, M., Onorato, P., & De Ambrosis, A, (2015b). Insegnare la fisica quantistica a scuola: un percorso basato sul metodo dei cammini di Feynman. Giornale di fisica, 1, 45-70.

Malgieri, M., Onorato, P., & De Ambrosis, A. (2016). Design and refinement of an introductory teaching-learning sequence in quantum physics. Proceedings of ESERA. Part 5: Teaching learning sequences as innovations for science teaching and learning, 720-731.

Malgieri, M., Onorato, P., & De Ambrosis, A. (2017). Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school Physical Review Physics Education Research, 1-25.

Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave-and particle-like properties of quantum entities. European Journal of Physics, 23, 45–53.

Maurines, L. (2010) Geometrical reasoning in wave situations: The case of light diffraction and coherent illumination optical imaging. International Journal of Science Education, 32, 1895–1926.

Montenegro, R .L., Pessoa Jr., O. (2002). Interpretações da teoria quântica e as concepções dos alunos do curso de física. Investigações em Ensino de Ciências, 7(2). http://www.if.ufrgs.br/public/ensino/vol7/n2/v7_n2_a1.html

Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70, 200-209.

Niedderer, H. (1996). Teaching quantum atomic physics in college and research results about a learning pathway Proceedings of the International Conference on Undergraduate Physics Education (ICUPE) University of Maryland, College Park, USA.

Ogborn, J., & Taylor, E. (2005). Quantum physics explains Newton’s laws of motion. Physics Education, 40, 26-34.

Ogborn, J., Hanck. J., & Taylor, E. (2006). A first introduction to quantum behavior. The GIREP conference 2006, Modeling in Physics and Physics Education, Universiteit van Amsterdam, The Netherlands.

Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: a study in Norway. International Journal of Science Education, 24, 565–574.

Osterman , F and Ricci, T (2004). Construindo uma unidade didactica conceitual sobre mecanica cuantica: um estudo na formaçao de profesores de fisica. Ciencia & Educaçao, 10, (2) 235-257. http://www.sbfisica.org.br/fne/Vol7/Num1/v12a07.pdf

Pessoa Jr, O. (1997). Interferometria, interpretação e intuição: uma introdução conceitual à Física Quântica. Revista Brasileira de Ensino de Física, 19 (1) 27-47.

Pinto, A. C., & Zanetic, J. (1999). É possível levar a Física Quântica para o Ensino Médio? Caderno Catarinense de Ensino de Física, 16(1), 7-34.

Stamatis Vokos, P., Bradley, S., Ambrose, S., & McDermott, L. C (2000), Student understanding of the wave nature of matter: Diffraction and interference of particles American Journal of Physics, 68, S42.

Shankar, R. (1980) Quantum Mechanics. New York: Plenum.

Taylor, E., Vokos, S . & O’Meara, J. (1998). Teaching Feynman’s Sum Over Paths Quantum Theory. Computers in Physics 12, 190-199.

Vergnaud, G (1990) La teoría de los campos conceptuales. Recherches en Didáctique des Mathematiques, 10, 133-170.

Vergnaud, G (2013). Conceptual development and learning. Revista Qurriculum, 26, 39-59.

Wosilait, K, Heron, P, Shaffer, P., & McDermott, L. (1999) Addressing student difficulties in applying a wave model to the interference and diffraction of light. American Journal of Physics, 67, 5-15.

Zollman, D (1999). Conceptual understanding of quantum mechanics after using hands-on and visualization instructional materials. Proceedings Annual meeting National Association for Research in Science Teaching. 2-6.

Downloads

Published

07/11/2018

How to Cite

Fanaro, M. de los A., Arlego, M. J. F., Otero, M. R., & Elgue, M. (2018). Students’ Interpretations of Quantum Mechanics Concepts from Feynman’s Sum of all Paths Applied to Light. International Journal of Physics and Chemistry Education, 10(2), 41–47. https://doi.org/10.51724/ijpce.v10i2.19