Physic and Mathematics models in a co-disciplinary Study and Research Paths (SRPs) in the pre-service teacher education
Abstract views: 322 / PDF downloads: 273
DOI:
https://doi.org/10.51724/ijpce.v11i3.50Keywords:
Mathematical and Physical models, Study and Research Paths, pre-service teacher training, university levelAbstract
We present results of an implementation of Study and Research Path (SRP) carried out into a pre- service mathematics teacher-training course at University level. A co-disciplinary SRP from the generating question Q0: Why did the Movediza stone in Tandil fall? Requires developing both physical and mathematical models to build a possible answer to this question. Some conclusions concerning on the restrictions and relevance of introducing the SRP in pre-service teachers training courses related to modeling activity at university are presented.
Downloads
References
Alonso, M. & Finn, E. J. (1992). Física 1. México: Addison-Wesley Iberoamericana.
Barquero, B., Bosch, M., & Gascón, J. (2011). Los Recorridos de Estudio e Investigación y la modelización matemática en la enseñanza universitaria de las Ciencias Experimentales. Enseñanza de las Ciencias, Revista de investigación y experiencias didácticas, 29 (3), pp. 339-352.
Barquero, B., Monreal, N., Ruiz-Munzón, N., & Serrano, L. (2018). Linking transmission with inquiry at university level through study and research paths: The case of forecasting Facebook user growth. International Journal of Research in Undergraduate Mathematics Education, 4(1), pp 8–22.
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – state, trends, and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68.
Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? En C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics. (pp. 222-231). Chichester, UK: Horwood.
Blomhøj, M. (2009). Different perspectives in Research on the teaching and learning Mathematical Modelling. Proceedings at the 11th International Congress on Mathematical Education in Monterrey, Mexico, July 6-13, 2008.
Bosch, M., García, F. J., Gascón, J., & Ruiz Higueras, L. (2006). La modelización matemática y el problema de la articulación de la matemática escolar. Una propuesta desde la teoría antropológica de lo didáctico. Educación Matemática, 18 (2), pp. 37-74.
Chalmers, C., Carter, M., & Cooper, T. (2017). Implementing “Big Ideas” to Advance the Teaching and Learning of Science, Technology, Engineering, and Mathematics (STEM). International Journal of Science and Mathematics Education, 15 (Suppl 1), 25-43.
Czerniak, C. M. & Johnson, C. C. (2014). Interdisciplinary science and STEM teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, 2nd ed. (Mahwah, NJ: Lawrence Erlbaum Associates, pp. 395–412.
Chevallard, Y. (1999) El análisis de las prácticas docentes en la teoría antropológica de lo didáctico. Recherches en Didactique des Mathématiques, 19 (2), pp. 221-266.
Chevallard, Y. (2013). Enseñar Matemáticas en la Sociedad de Mañana: Alegato a Favor de un Contraparadigma Emergente. Journal of Research in Mathematics Education, 2 (2), 161-182.
Chevallard, Y. (2015). Teaching Mathematics in Tomorrow’s Society: A Case for an Oncoming Counter Paradigm. En S.J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 173-187). Dordrecht: Springer.
El Hage, E. & Levy, P. (2012). La Piedra viva. Municipio de Tandil. Artes Gráficas. 2° Ed.
Elmer, F. J. (2011). The Pendulum Lab. University of Basel, Switzerland. Disponible en: http://www.elmer.unibas.ch/pendulum/.
Heil, D. R., Pearson, G. & Burger, S. E. (2013). Understanding Integrated STEM Education: Report on a National Study. ASEE Annual Conference & Exposition. Atlanta, Georgia.
Holmberg, L. E. (1982). Caras y Caretas, XV (702).
Otero, M. R., Arlego, M., & Llanos, V. C. (2017). Developing Research and Study Courses (RSC) in the pre-service teacher education. European Journal of Education Studies, 3 (8), pp. 214-240.
Otero, M. R., Gazzola, M., Llanos, V. C., & Arlego, M. (2016). Co-disciplinary Physics and Mathematics Research and Study Course (RSC) within three study groups: teachers-in-training, secondary school students and researchers. Science, Mathematics and ICT Education, 10 (1), pp. 55-78.
Otero, M. R., Fanaro, M., Corica, A. R., Llanos, V. C., Sureda, P., & Parra, V. (2013). La Teoría Antropológica de lo Didáctico en el Aula de Matemática. Editorial Dunken, Buenos Aires, Argentina. ISBN: 978-987-02-7071-3.
Peña, L. M., Soto, L. M, Mariño, O. Y. (2017). Mathematical Modelling as pedagogical strategy for solving the optimization problems to engineering student. Revista Actas de Ingeniería, 3. pp. 228-233.
Peralta, M. H., Ercoli, N. L., Godoy, M. L., Rivas, I., Montanaro, M. I., & Bacchiarello, R. (2008). Proyecto estructural de la réplica de la piedra movediza: comportamiento estático y dinámico. XX Jornadas Argentinas de Ingeniería Estructural.
Resnick, R., Halliday, D., & Krane, K. S. (2001). Física, Vol. 1. 4ta. Edición. México, CECSA.
Rojas, R. (1912). La Piedra muerta. Martín García, Editor, Buenos Aires, Argentina.
Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68 (4), 20–26.
Tipler, P. A. (1994). Física. Editorial Reverté. Barcelona, España.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 International Journal of Physics & Chemistry Education
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Authors