Investigating high school students’ ideas about energy transfer in simple electric circuits
Abstract views: 192 / PDF downloads: 107
DOI:
https://doi.org/10.51724/ijpce.v15i2.361Keywords:
Energy transfer, energy frameworks, interviews, qualitative study, demonstration experimentsAbstract
In a recent study, nine students, aged 16-17 years, from Vienna, Austria have been interviewed about energy in electrical circuits. This paper reflects on one part of the study focusing on questioning students about the process of energy transfer. The research design and method involved semi-structured interviews with demonstration experiments, in which the students were asked to observe, describe and explain the experiments. The analysis of the interviews revealed the difficulties students faced in explaining the role of energy and drawing the path of energy transfer in electrical circuits. The paper presents the different energy frameworks described by previous studies that have been used by the students and discusses the inconsistencies in their reasonings. The findings emphasize the need for suitable teaching materials to promote students’ understanding about energy and energy transfer in electrical circuits.
Downloads
References
Behle, J., & Wilhelm, T. (2017). Aktuelle Schülerrahmenkonzepte zur Energie. In V. Nordmeier, H. Grötzebauch (Chair), Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung Dresden 2017. Symposium conducted at the meeting of Fachverband Didaktik der Physik, Dresden.
Verordnung des Bundesministers für Unterricht und Kunst vom 14. November 1984 über die Lehrpläne der allgemeinbildenden höheren Schulen. (BGBl. Nr. 88/1985) https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=
Bundesnormen&Gesetzesnummer=10008568
Chabay, R. W., & Sherwood, B. A. (2007). Matter & interactions (3rd ed.). John Wiley & Sons, Inc.
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14(2), 161–199. https://doi.org/10.1207/s15327809jls1402_1
Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66–71. https://doi.org/10.1119/1.12989
Davis, B., & Kaplan, L. (2011). Poynting vector flow in a circular circuit. American Journal of Physics, 79(11), 1155–1162. https://doi.org/10.1119/1.3630927
diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105–225. https://doi.org/10.1080/07370008.1985.9649008
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72(1), 98–115. https://doi.org/10.1119/1.1614813
Galili, I., & Goihbarg, E. (2005). Energy transfer in electrical circuits: A qualitative account. American Journal of Physics, 73(2), 141–144. https://doi.org/10.1119/1.1819932
Griffiths, D. J. (2024). Introduction to electrodynamics (Fifth edition). Cambridge University Press. https://doi.org/10.1017/9781009397735
Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055. https://doi.org/10.1119/1.14030
Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52-S59. https://doi.org/10.1119/1.19520
Härtel, H. (1987). A qualitative approach to electricity. Technical Report, Jun. 1985 - Sep. 1986 Xerox Corp., Palo Alto, CA. Inst. For Research on Learning.
Hernandes, J. A., & Assis, A. K. T. (2003). The potential, electric field and surface charges for a resistive long straight strip carrying a steady current. American Journal of Physics, 71(9), 938–942. https://doi.org/10.1119/1.1574319
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497
Ivanjek, L., Morris, L., Schubatzky, T., Hopf, M., Burde, J.‑P., Haagen-Schützenhöfer, C., Dopatka, L., Spatz, V., & Wilhelm, T. (2021). Development of a two-tier instrument on simple electric circuits. Physical Review Physics Education Research, 17(2), 020123. https://doi.org/10.1103/PhysRevPhysEducRes.17.020123
Jackson, J. D. (1996). Surface charges on circuit wires and resistors play three roles. American Journal of Physics, 64(7), 855–870. https://doi.org/10.1119/1.18112
Jelicic, K., Planinic, M., & Planinsic, G. (2017). Analyzing high school students’ reasoning about electromagnetic induction. Physical Review Physics Education Research, 13(1), 010112. https://journals.aps.org/prper/abstract/10.1103/PhysRevPhysEducRes.13.010112
Johsua, S., & Dupin, J. J. (1985). Schematic diagrams, representations and type of reasoning in basic electricity. In R. Duit, C. v. Rhöneck, & W. Jung (Eds.), IPN-Arbeitsberichte: Vol. 59, Aspects of understanding electricity: Proceedings of an international workshop (pp. 129–138). Schmidt und Klaunig.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
Mayring, P. (2015). Qualitative Inhaltsanalyse: Grundlagen und Techniken (12th ed.). Beltz.
McDermott, L. C., & Shaffer, P. S. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. American Journal of Physics, 60(11), 994–1002. https://doi.org/10.1119/1.17003
Niedderer, H., & Schecker, H. (1992). Towards an explicit description of cognitive systems for research in physics learning. In R. Duit, F. M. Goldberg, & H. Niedderer (Eds.), IPN: Vol. 131. Research in physics learning: Theoretical issues and empirical studies ; proceedings of an International Workshop held at the University of Bremen, March 4-8, 1991 (pp. 74–98). Inst. für die Pädagogik der Naturwissenschaften an der Univ.
Pilser, A. (2023). Empirische Erhebung von Vorstellungen zur Energie in der Elektrizitätslehre [Master’s Thesis, University of Vienna]. https://utheses.univie.ac.at/detail/65926
Poynting, H. J. (1884). On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society of London, 175, 343–361.
Sefton, I. M. (2002). Understanding electricity and circuits: What the text books don’t tell you. Proceedings of the 9th Science Teachers Workshop. Science Foundation for Physics, Sydney.
Stetzer, M. R., van Kampen, P., Shaffer, P. S., & McDermott, L. C. (2013). New insights into student understanding of complete circuits and the conservation of current. American Journal of Physics, 81(2), 134–143. https://doi.org/10.1119/1.4773293
Trumper, R., & Gorsky, P. (1993). Learning about energy: The influence of alternative frameworks, cognitive levels, and closed-mindedness. Journal of Research in Science Teaching, 30(7), 637–648. https://doi.org/10.1002/tea.3660300704
von Rhöneck, C. (1986). Vorstellungen vom elektrischen Stromkreis und zu den Begriffen Strom, Spannung und Widerstand. Naturwissenschaften Im Unterricht - Physik/Chemie(34), 10–14.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3
Watts, D. M. (1983). A study of alternative frameworks in school science. University of Surrey.
Winter, L. (2023). Acceptance surveys on energy transfer in electrical systems for upper secondary school students. ESERA Conference 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Louisa Winter, Anna Pilser
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Authors